Skip to main content

Recycling of Critical Metals

  • Conference paper
  • First Online:
REWAS 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

In modern high-tech products, rare metals play an increasingly pivotal role. To support the development of a highly sustainable society, where valuable natural resources are not wasted and most materials are recycled, new efficient, environment-friendly recycling technologies for rare metals are required. The authors have developed environment-friendly recycling technologies that efficiently extract rare metals and precious metals from scrap without generating harmful waste solutions (waste liquids) and exhaust gases. These technologies include (1) a technique for converting contaminated titanium scrap, which is expected to increase in the future, into high-quality titanium feed material; (2) a technology for extracting and separating rare metals, such as rhenium, directly from end-of-life turbine blades used in aircraft and power stations without generating any waste aqueous solutions; and (3) a method for efficiently concentrating and separating platinum group metals in automobile catalytic converters without using harmful acids or other chemicals. These technologies will help establish an environment-friendly rare metal recycling system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okabe TH, Hamanaka Y, Taninouchi Y (2016) Direct oxygen removal technique for recycling titanium using molten MgCl2 Salt. Faraday Discuss 190:109–126. https://doi.org/10.1039/C5FD00229J

    Article  CAS  Google Scholar 

  2. Okabe TH, Zheng C, Taninouchi Y (2018) Thermodynamic considerations of direct oxygen removal from titanium by utilizing the deoxidation capability of rare-earth metals. Metall Mater Trans B 49(3):1056–1066. https://doi.org/10.1007/s11663-018-1172-4

    Article  CAS  Google Scholar 

  3. Okabe TH (2017) Bottlenecks in rare metal supply and the importance of recycling—a Japanese perspective. Miner Process Extr Metall 126(1–2):22–32. https://doi.org/10.1080/03719553.2016.1268855

    Article  CAS  Google Scholar 

  4. Okabe TH, Nakamura M, Oishi T, Ono K (1993) Electrochemical deoxidation of titanium. Metall Trans B 24B:449–455. https://doi.org/10.1007/BF02666427

    Article  CAS  Google Scholar 

  5. Nakamura M, Okabe TH, Oishi T, and Ono K (1993) Electrochemical deoxidation of titanium. In: Proceedings of international symposium molten salt chemical technology, pp 529–540

    Google Scholar 

  6. Taninouchi Y, Hamanaka Y, Okabe TH (2016) Electrochemical deoxidation of titanium and its alloy using molten magnesium chloride. Metall Mater Trans B 47(6):3394–3404. https://doi.org/10.1007/s11663-016-0792-9

    Article  CAS  Google Scholar 

  7. Okabe TH, Taninouchi Y, Zheng C (2018) Thermodynamic analysis of deoxidation of titanium through the formation of rare-earth oxyfluorides. Metall Mater Trans B. https://doi.org/10.1007/s11663-018-1386-5

    Article  CAS  Google Scholar 

  8. Yagi R, Okabe TH (2016) Current status and smelting technologies of rhenium. J Japan Inst Met 80(6):341–349 (in Japanese). https://doi.org/10.2320/jinstmet.j2016022

    Article  CAS  Google Scholar 

  9. Yagi R, Okabe TH (2016) Current status of recycling of rhenium and process technologies. J MMIJ 132(7):114–122. (in Japanese). https://doi.org/10.2473/journalofmmij.132.114

    Article  CAS  Google Scholar 

  10. Yagi R, Okabe TH (2017) Recycling technologies for rare metals contained in Ni-based superalloy turbine blade. Kinzoku 87(9):39–46 (in Japanese). https://doi.org/10.2473/journalofmmij.132.114

    Article  CAS  Google Scholar 

  11. Yagi R, Okabe TH (2017) Recovery of nickel from nickel-based superalloy scraps by utilizing molten zinc. Metall Mater Trans B 48(1):335–345. https://doi.org/10.1007/s11663-016-0854-z

    Article  CAS  Google Scholar 

  12. Yagi R, Okabe TH (2017) Continuous extraction of nickel from superalloy scraps using zinc circulation. Metall Mater Trans B 48(3):1494–1501. https://doi.org/10.1007/s11663-017-0941-9

    Article  CAS  Google Scholar 

  13. Horike C, Morita K, Okabe TH (2012) Effective dissolution of platinum by using chloride salts in recovery process. Metall Mater Trans B 43B(6):1300–1307. https://doi.org/10.1007/s11663-012-9746-z

    Article  CAS  Google Scholar 

  14. Okabe TH, Mitsui J (2016) Japan Patent, P5946034

    Google Scholar 

  15. Taninouchi Y, Watanabe T, Okabe TH (2017) Recovery of platinum group metals from spent catalysts using electroless nickel plating and magnetic separation. Mater Trans (JIM) 58(3):410–419. https://doi.org/10.2320/matertrans.M-M2017801

    Article  CAS  Google Scholar 

  16. Taninouchi Y, Watanabe T, Okabe TH (2017) magnetic concentration of platinum group metals from catalyst scraps using iron deposition pretreatment. Metall Mater Trans B 48(4):2027–2036. https://doi.org/10.1007/s11663-017-0999-4

    Article  CAS  Google Scholar 

  17. Taninouchi Y, Okabe TH (2017) Enhanced dissolution of platinum group metals by utilizing electroless iron deposition. Metall Mater Trans B 48(6):2866–2872. https://doi.org/10.1007/s11663-017-1087-5

    Article  CAS  Google Scholar 

  18. Taninouchi Y, Okabe TH (2018) Effective alloying treatment for platinum using iron chloride vapor. Mater Trans (JIM) 59(1):88–97. https://doi.org/10.2320/matertrans.m-m2017844

    Article  CAS  Google Scholar 

  19. Taninouchi Y, Okabe TH (2018) Recovery of platinum group metals from spent catalysts using iron chloride vapor treatment. Metall Mater Trans B 49(4):1781–1793. https://doi.org/10.1007/s11663-018-1269-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru H. Okabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okabe, T.H., Ouchi, T. (2019). Recycling of Critical Metals. In: Gaustad, G., et al. REWAS 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10386-6_28

Download citation

Publish with us

Policies and ethics