Skip to main content

Gaps and Well-Composed Objects in the Triangular Grid

  • Conference paper
  • First Online:
Computational Topology in Image Context (CTIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11382))

Included in the following conference series:

Abstract

We extend the notion of a gap from the square to the triangular grid, and we propose a possible classification of gaps in this grid. We give four definitions of well-composed objects in the triangular grid by translating the existing definitions of such objects in the square grid. We show that these definitions in the triangular grid are equivalent, as they are in the square grid.

We give a formula relating the number of gaps of different types in an object in this grid with the number of boundary cells in the object, as well as three short intuitive proofs of this formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgefors, G.: Distance transformations on hexagonal grids. Pattern Recognit. Lett. 9(2), 97–105 (1989)

    Article  Google Scholar 

  2. Borgefors, G., Sanniti di Baja, G.: Skeletonizing the distance transform on the hexagonal grid. In: 9th International Conference on Pattern Recognition, ICPR, pp. 504–507 (1988)

    Google Scholar 

  3. Boutry, N.: A study of well-composedness in n-D (Une étude du bien-composé en dimension n). Ph.D. thesis, University of Paris-Est, France (2016)

    Google Scholar 

  4. Boutry, N., Géraud, T., Najman, L.: How to make nD images well-composed without interpolation. In: 2015 IEEE International Conference on Image Processing, ICIP 2015, pp. 2149–2153 (2015)

    Google Scholar 

  5. Boutry, N., Géraud, T., Najman, L.: A tutorial on well-composedness. J. Math. Imaging Vis. 60(3), 443–478 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bribiesca, E.: A new chain code. Pattern Recognit. 32(2), 235–251 (1999)

    Article  Google Scholar 

  7. Brimkov, V.E.: Formulas for the number of \((n-2)\)-gaps of binary objects in arbitrary dimension. Discret. Appl. Math. 157(3), 452–463 (2009)

    Article  MathSciNet  Google Scholar 

  8. Brimkov, V.E., Maimone, A., Nordo, G.: An explicit formula for the number of tunnels in digital objects. CoRR abs/cs/0505084 (2005). http://arxiv.org/abs/cs/0505084

  9. Brimkov, V.E., Maimone, A., Nordo, G.: Counting gaps in binary pictures. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006). https://doi.org/10.1007/11774938_2

    Chapter  Google Scholar 

  10. Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R.: The number of gaps in binary pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 35–42. Springer, Heidelberg (2005). https://doi.org/10.1007/11595755_5

    Chapter  Google Scholar 

  11. Brimkov, V.E., Moroni, D., Barneva, R.: Combinatorial relations for digital pictures. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 189–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_16

    Chapter  MATH  Google Scholar 

  12. Brimkov, V.E., Nordo, G., Barneva, R.P., Maimone, A.: Genus and dimension of digital images and their time- and space-efficient computation. Int. J. Shape Model. 14(2), 147–168 (2008)

    Article  MathSciNet  Google Scholar 

  13. Čomić, L.: On gaps in digital objects. In: Barneva, R., Brimkov, V., Tavares, J. (eds.) IWCIA 2018. LNCS, vol. 11255, pp. 3–16. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05288-1_1

    Chapter  Google Scholar 

  14. Čomić, L., Magillo, P.: Repairing 3D binary images using the BCC grid with a 4-valued combinatorial coordinate system. Inf. Sci. (2019, to appear)

    Google Scholar 

  15. Deutsch, E.S.: On parallel operations on hexagonal arrays. IEEE Trans. Comput. 19(10), 982–983 (1970)

    Article  Google Scholar 

  16. Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular arrays. Commun. ACM 15(9), 827–837 (1972)

    Article  Google Scholar 

  17. Dutt, M., Andres, E., Largeteau-Skapin, G.: Characterization and generation of straight line segments on triangular cell grid. Pattern Recognit. Lett. 103, 68–74 (2018)

    Article  Google Scholar 

  18. Dutt, M., Biswas, A., Nagy, B.: Number of shortest paths in triangular grid for 1- and 2-neighborhoods. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 115–124. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26145-4_9

    Chapter  Google Scholar 

  19. Evako, A.V., Kopperman, R., Mukhin, Y.V.: Dimensional properties of graphs and digital spaces. J. Math. Imaging Vis. 6(2–3), 109–119 (1996)

    Article  MathSciNet  Google Scholar 

  20. Freeman, H.: Algorithm for generating a digital straight line on a triangular grid. IEEE Trans. Comput. 28(2), 150–152 (1979)

    Article  MathSciNet  Google Scholar 

  21. Golay, M.J.E.: Hexagonal parallel pattern transformations. IEEE Trans. Comput. 18(8), 733–740 (1969)

    Article  Google Scholar 

  22. González-Díaz, R., Jiménez, M.-J., Medrano, B.: 3D well-composed polyhedral complexes. Discret. Appl. Math. 183, 59–77 (2015)

    Article  MathSciNet  Google Scholar 

  23. González-Díaz, R., Jiménez, M.-J., Medrano, B.: Efficiently storing well-composed polyhedral complexes computed over 3D binary images. J. Math. Imaging Vis. 59(1), 106–122 (2017)

    Article  MathSciNet  Google Scholar 

  24. Gray, S.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20, 551–561 (1971)

    Article  Google Scholar 

  25. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Process. 4(9), 1213–1222 (1995)

    Article  Google Scholar 

  26. Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math. Artif. Intell. 75(1–2), 53–68 (2015)

    Article  MathSciNet  Google Scholar 

  27. Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discret. Appl. Math. 216, 441–448 (2017)

    Article  MathSciNet  Google Scholar 

  28. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers, San Francisco, Amsterdam (2004)

    MATH  Google Scholar 

  29. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis., Graph., Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  30. Kovalevsky, V.A.: Geometry of Locally Finite Spaces: Computer Agreeable Topology and Algorithms for Computer Imagery. Editing House Dr. Bärbel Kovalevski, Berlin (2008)

    Google Scholar 

  31. Latecki, L.J.: 3D well-composed pictures. CVGIP: Graph. Model Image Process. 59(3), 164–172 (1997)

    Google Scholar 

  32. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)

    Article  Google Scholar 

  33. Maimone, A., Nordo, G.: On 1-gaps in 3d digital objects. Filomat 22(3), 85–91 (2011)

    Article  MathSciNet  Google Scholar 

  34. Maimone, A., Nordo, G.: A formula for the number of \((n-2)\)-gaps in digital \(n\)-objects. Filomat 27(4), 547–557 (2013)

    Article  MathSciNet  Google Scholar 

  35. Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Ann. Math. Artif. Intell. 75(1–2), 117–134 (2015)

    Article  MathSciNet  Google Scholar 

  36. Nagy, B., Lukic, T.: Dense projection tomography on the triangular tiling. Fundam. Inform. 145(2), 125–141 (2016)

    Article  MathSciNet  Google Scholar 

  37. Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood sequences in a hexagonal grid. Theor. Comput. Sci. 412(15), 1364–1377 (2011)

    Article  MathSciNet  Google Scholar 

  38. Sarkar, A., Biswas, A., Dutt, M., Bhowmick, P., Bhattacharya, B.B.: A linear-time algorithm to compute the triangular hull of a digital object. Discret. Appl. Math. 216, 408–423 (2017)

    Article  MathSciNet  Google Scholar 

  39. Sarkar, A., Biswas, A., Dutt, M., Mondal, S.: Finding shortest triangular path and its family inside a digital object. Fundam. Inform. 159(3), 297–325 (2018)

    Article  MathSciNet  Google Scholar 

  40. Siqueira, M., Latecki, L.J., Tustison, N.J., Gallier, J.H., Gee, J.C.: Topological repairing of 3D digital images. J. Math. Imaging Vis. 30(3), 249–274 (2008)

    Article  MathSciNet  Google Scholar 

  41. Sossa-Azuela, J.H., Cuevas-Jiménez, E.V., Zaldivar-Navarro, D.: Computation of the Euler number of a binary image composed of hexagonal cells. J. Appl. Res. Technol. 8, 340–350 (2010)

    Google Scholar 

  42. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007)

    Article  Google Scholar 

  43. Wiederhold, P., Morales, S.: Thinning on quadratic, triangular, and hexagonal cell complexes. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 13–25. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78275-9_2

    Chapter  Google Scholar 

Download references

Acknowledgement

We are grateful to the anonymous reviewers for careful reading of the paper and constructive comments. This work has been partially supported by the Ministry of Education and Science of the Republic of Serbia within the Project No. 34014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Čomić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Čomić, L. (2019). Gaps and Well-Composed Objects in the Triangular Grid. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds) Computational Topology in Image Context. CTIC 2019. Lecture Notes in Computer Science(), vol 11382. Springer, Cham. https://doi.org/10.1007/978-3-030-10828-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10828-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10827-4

  • Online ISBN: 978-3-030-10828-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics