Skip to main content

Finite-Horizon \(H_{\infty }\) Control Problem with Singular Control Cost

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 495))

Abstract

For linear uncertain systems, we consider a finite-horizon \(H_{\infty }\) control problem. A weight matrix of the control cost in the functional of this problem is singular. In this case, the Riccati equation approach is not applicable to solution of the considered \(H_{\infty }\) problem, meaning that it is singular. To solve this problem, a regularization method is proposed. Namely, the original problem is associated with a new \(H_{\infty }\) control problem for the same dynamics, while with a new functional. The weight matrix of the control cost in the new functional is a nonsingular parameter-dependent matrix, which becomes the original weight matrix for zero value of the parameter. For all sufficiently small values of this parameter, the new \(H_{\infty }\) control problem is regular, and it is a partial cheap control problem. Using its asymptotic analysis, a controller solving the original singular \(H_{\infty }\) control problem is designed. An illustrative example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doyle, J., Francis, B., Tannenbaum, A.: Feedback Control Theory. Macmillan Publishing Co., London (1990)

    Google Scholar 

  2. Basar, T., Bernard, P.: \(H_{\infty }\)-Optimal Control and Related Minimax Design Problems: A Dynamic Games Approach. Birkhauser, Boston (1991)

    Google Scholar 

  3. Petersen, I., Ugrinovski, V., Savkin, A.V.: Robust Control Design Using \(H_{\infty }\) Methods. Springer, London (2000)

    Book  Google Scholar 

  4. Martynyuk, A.A., Martynyuk-Chernienko, Yu.A.: Uncertain Dynamical Systems: Stability and Motion Control. CRC Press, Florida (2011)

    Google Scholar 

  5. Glizer, V.Y., Turetsky, V.: Robust Controllability of Linear Systems. Nova Science Publishers, New-York (2012)

    MATH  Google Scholar 

  6. Chang, X.H.: Robust Output Feedback \(H_{\infty }\) Control and Filtering for Uncertain Linear Systems. Springer, Berlin (2014)

    Book  Google Scholar 

  7. Fridman, L., Poznyak, A., Rodrguez, F.J.B.: Robust Output LQ Optimal Control via Integral Sliding Modes. Birkhuser, Basel (2014)

    Book  Google Scholar 

  8. Petersen, I.R., Tempo, R.: Robust control of uncertain systems: classical results and recent developments. Autom. J. IFAC 50, 1315–1335 (2014). https://doi.org/10.1016/j.automatica.2014.02.042

    Article  MathSciNet  MATH  Google Scholar 

  9. Yedavalli, R.K.: Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach. Springer, New York (2014)

    Book  Google Scholar 

  10. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.: State-space solution to standard \(H_{2}\) and \(H_{\infty }\) control problem. IEEE Trans. Autom. Control 34, 831–847 (1989). https://doi.org/10.1109/9.29425

    Article  MATH  Google Scholar 

  11. Petersen, I.R.: Disturbance attenuation and \(H_{\infty }\) optimization: a design method based on the algebraic Riccati equation. IEEE Trans. Autom. Control 32, 427–429 (1987). https://doi.org/10.1109/TAC.1987.1104609

    Article  MATH  Google Scholar 

  12. Stoorvogel, A.A.: The singular minimum entropy \(H_{\infty }\) control problem. Syst. Control Lett. 16, 411–422 (1991). https://doi.org/10.1016/0167-6911(91)90113-S

    Article  MathSciNet  MATH  Google Scholar 

  13. Copeland, B.R., Safonov, M.G.: A zero compensation approach to singular \(H^2\) and \(H^{\infty }\) problems. Int. J. Robust Nonlinear Control 5, 71–106 (1995). https://doi.org/10.1002/rnc.4590050202

    Article  MathSciNet  MATH  Google Scholar 

  14. Xin, X., Guo, L., Feng, C.: Reduced-order controllers for continuous and discrete-time singular \(H^{\infty }\) control problems based on LMI. Autom. J. IFAC 32, 1581–1585 (1996). https://doi.org/10.1016/S0005-1098(96)00103-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Gahinet, P., Laub, A.J.: Numerically reliable computation of optimal performance in singular \(H_{\infty }\) control. SIAM J. Control Optim. 35, 1690–1710 (1997). https://doi.org/10.1137/S0363012994269958

    Article  MathSciNet  MATH  Google Scholar 

  16. Orlov, Y.V.: Regularization of singular \(H_2\) and \(H_\infty \) control problems. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 4, pp. 4140–4144. IEEE Press, New York (1997). https://doi.org/10.1109/CDC.1997.652517

  17. Stoorvogel, A.A., Trentelman, H.L.: The quadratic matrix inequality in singular \(H_\infty \) control with state feedback. SIAM J. Control Optim. 28, 1190–1208 (1990). https://doi.org/10.1137/0328064

    Article  MathSciNet  MATH  Google Scholar 

  18. Stoorvogel, A.A.: The \(H_\infty \) Control Problem: A State Space Approach (e-book). University of Michigan, Ann-Arbor (2000)

    Google Scholar 

  19. Chuang, N., Petersen, I.R., Pota, H.R.: Robust \(H^\infty \) control in fast atomic force microscopy. In: Proceedings of the 2011 American Control Conference, pp. 2258–2265. IEEE Press, New York (2011). https://doi.org/10.1109/ACC.2011.5991155

  20. Glizer, V. Y., Kelis, O.: Solution of a singular control problem: a regularization approach. In: Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, Vol. 1, pp. 25–36. Scitepress - Science and Technology Publications, Setbal, Portugal (2017). https://doi.org/10.5220/0006397600250036

  21. Stoorvogel, A.A., Trentelman, H.L.: The finite-horizon singular \(H_{\infty }\) control problem with dynamic measurement feedback. Linear Algebra Appl. 187, 113–161 (1993)

    Article  MathSciNet  Google Scholar 

  22. Glizer, V.Y.: Finite horizon \(H_{\infty }\) cheap control problem for a class of linear systems with state delays. In: Proceedings of the 6th International Conference on Integrated Modeling and Analysis in Applied Control and Automation, pp. 1–10. CAL-TEK SRL Press, Rende, Italy (2012)

    Google Scholar 

  23. Bell, D.J., Jacobson, D.H.: Singular Optimal Control Problems. Academic Press, New-York (1975)

    Google Scholar 

  24. Kurina, G.A.: On a degenerate optimal control problem and singular perturbations. Soviet Math. Doklady 18, 1452–1456 (1977)

    MATH  Google Scholar 

  25. Glizer, V.Y.: Solution of a singular optimal control problem with state delays: a cheap control approach. In: Reich, S., Zaslavski, A.J. (eds.) Optimization Theory and Related Topics, Contemporary Mathematics Series, vol. 568, pp. 77–107. American Mathematical Society, Providence (2012). https://doi.org/10.1090/conm/568/11278

  26. Glizer, V.Y.: Stochastic singular optimal control problem with state delays: regularization, singular perturbation, and minimizing sequence. SIAM J. Control Optim. 50, 2862–2888 (2012). https://doi.org/10.1137/110852784

    Article  MathSciNet  MATH  Google Scholar 

  27. Glizer, V.Y.: Singular solution of an infinite horizon linear-quadratic optimal control problem with state delays. In: Wolansky, G., Zaslavski, A.J. (eds.) Variational and Optimal Control Problems on Unbounded Domains, Contemporary Mathematics Series, vol. 619, pp. 59–98. American Mathematical Society, Providence (2014). https://doi.org/10.1090/conm/619/12385

  28. Turetsky, V., Glizer, V.Y., Shinar, J.: Robust trajectory tracking: differential game/cheap control approach. Int. J. Syst. Sci. 45, 2260–2274 (2014). https://doi.org/10.1080/00207721.2013.768305

    Article  MathSciNet  MATH  Google Scholar 

  29. Shinar, J., Glizer, V.Y., Turetsky, V.: Solution of a singular zero-sum linear-quadratic differential game by regularization. Int. Game Theory Rev. 16, 1440007-1–1440007-32 (2014). https://doi.org/10.1142/S0219198914400076

    Article  MathSciNet  Google Scholar 

  30. Glizer, V.Y., Kelis, O.: Solution of a zero-sum linear quadratic differential game with singular control cost of minimiser. J. Control Decis. 2, 155–184 (2015). https://doi.org/10.1080/23307706.2015.1057545

    Article  MathSciNet  Google Scholar 

  31. Glizer, V.Y.: Nash equilibrium in a singular two-person linear-quadratic differential game: a regularization approach. In: Proceedings of 24th Mediterranean Conference on Control and Automation, pp. 1041–1046. IEEE Press, New York (2016). https://doi.org/10.1109/MED.2016.7535851

  32. Glizer, V.Y., Kelis, O.: Singular infinite horizon zero-sum linear-quadratic differential game: saddle-point equilibrium sequence. Numer. Algebra Control Optim. 7, 1–20 (2017). https://doi.org/10.3934/naco.2017001

    Article  MathSciNet  MATH  Google Scholar 

  33. Glizer, V.Y.: Solution of a singular \(H_{\infty }\) control problem for linear systems with state delays. In: Proceedings of the 2013 European Control Conference, pp. 2843–2848. IEEE Press, New York (2013)

    Google Scholar 

  34. Glizer, V.Y.: Asymptotic analysis and solution of a finite-horizon \(H_{\infty }\) control problem for singularly-perturbed linear systems with small state delay. J. Optim. Theory Appl. 117, 295–325 (2003). https://doi.org/10.1023/A:1023631706975

    Article  MathSciNet  MATH  Google Scholar 

  35. Glizer, V.Y., Fridman, L., Turetsky, V.: Cheap suboptimal control of an integral sliding mode for uncertain systems with state delays. IEEE Trans. Automat. Control 52, 1892–1898 (2007). https://doi.org/10.1109/TAC.2007.906201

    Article  MathSciNet  MATH  Google Scholar 

  36. Vasil’eva, A.B., Butuzov, V.F., Kalachev, L.V.: The Boundary Function Method for Singular Perturbed Problems. SIAM Books, PA (1995)

    Book  Google Scholar 

  37. Glizer, V.Y.: Correctness of a constrained control Mayer’s problem for a class of singularly perturbed functional-differential systems. Control Cybernet. 37, 329–351 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Kelis .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proof of Theorem 2

The proof consists of four stages.

Stage 1. At this stage, we transform the HIPCCP with \(u(t)=u_{\varepsilon ,0}^{*}[z(t),t]\) to an equivalent \(H_{\infty }\) problem. Remember that the controller \(u_{\varepsilon ,0}^{*}[z(t),t]\), given by (42), solves the HIPCCP if the inequality

$$\begin{aligned} J_{\varepsilon }\Big (u_{\varepsilon ,0}^{*}[z(t),t],w(t)\Big )\le 0 \end{aligned}$$
(47)

is fulfilled along trajectories of the system (7) for all \(w(t)\in L^{2}[0,t_f; E^{m}]\).

Substituting the controller \(u_{\varepsilon ,0}^{*}[z(t),t]\) into the system (7) and the functional (14), as well as using of the block representations for the matrices B(t), D(t), \(G(t)+{\mathcal E}\), A(t) and for the vector z(t) (see equations (10), (12), (15), (23) and (40)), we obtain the following system and functional:

$$\begin{aligned} \frac{dz(t)}{dt}=\widehat{A}(t,\varepsilon )z(t)+F(t)w(t),\ \ \ t\in [0,t_f],\ \ \ z(0)=0, \end{aligned}$$
(48)
$$\begin{aligned} \widehat{J}_{\varepsilon }\big (w(t)\big ){\mathop {=}\limits ^{\triangle }} J_{\varepsilon }\Big (u_{\varepsilon ,0}^{*}[z(t),t],w(t)\Big )\nonumber \\ = z^{T}(t_f)Kz(t_f) + \int _{0}^{t_f}\Big (z^{T}(t)\widehat{D}(t)z(t) - \gamma ^{2}w^{T}(t)w(t)\Big )dt, \end{aligned}$$
(49)

where

$$\begin{aligned} \widehat{A}(t,\varepsilon )=\left( \begin{array}{l}\widehat{A}_{1}(t)\ \ \ \ \ \ \ \ \ \ \ \ \ \widehat{A}_{2}(t)\\ (1/\varepsilon )\widehat{A}_{3}(t,\varepsilon )\ \ \ (1/\varepsilon )\widehat{A}_{4}(t,\varepsilon )\end{array}\right) ,\ \widehat{D}=\left( \begin{array}{l}\widehat{D}_{1}(t)\ \ \ \ \widehat{D}_{2}(t)\\ \widehat{D}_{2}^{T}(t)\ \ \ \widehat{D}_{3}(t)\end{array}\right) , \end{aligned}$$
(50)
$$\begin{aligned} \widehat{A}_{1}(t) = A_{1}(t)-\widetilde{B}G_{q}^{-1}(t)\widetilde{B}^{T}P_{1,0}^{o}(t),\ \ \ \widehat{A}_{2}(t) = A_{2}(t),\ \ \ \widehat{A}_{3}(t,\varepsilon )=\varepsilon A_{3}(t) \nonumber \\ -\varepsilon {\mathcal H}_{2}(t)G_{q}^{-1}(t)\widetilde{B}^{T}P_{1, 0}^{o}(t)-\big (P_{2, 0}^{o}(t)\big )^{T},\ \ \ \widehat{A}_{4}(t,\varepsilon )= \varepsilon A_{4}(t)-P_{3, 0}^{o}(t),\nonumber \\ \end{aligned}$$
(51)
$$\begin{aligned} \widehat{D}_{1}(t)=D_{1}(t)+ P_{1, 0}^{o}(t)\widetilde{B}G_{q}^{-1}(t)\widetilde{B}^{T}P_{1, 0}^{o}(t) + P_{2,0}^{o}(t)\big (P_{2,0}^{o}(t)\big )^{T}\nonumber \\ = D_{1}(t) + P_{1,0}^{o}(t)B_{1,0}(t)\Theta ^{-1}(t)B_{1,0}^{T}(t)P_{1,0}^{o}(t),\nonumber \\ \widehat{D}_{2}(t)= P_{2, 0}^{o}(t)P_{3, 0}^{o}(t) = P_{1,0}^{o}(t)A_{2}(t),\ \ \widehat{D}_{3}(t) = D_{2}(t) + \big (P_{3, 0}^{o}(t)\big )^{2} = 2D_{2}(t).\nonumber \\ \end{aligned}$$
(52)

Due to (49), the inequality (47) is equivalent to the inequality

$$\begin{aligned} \widehat{J}_{\varepsilon }\big (w(t)\big )\le 0 \end{aligned}$$
(53)

along trajectories of the system (48) for all \(w(t)\in L^{2}[0,t_f; E^{m}]\). The latter means that the solvability of the HIPCCP by \(u(t)=u_{\varepsilon ,0}^{*}[z(t),t]\) is equivalent to the solvability of the \(H_{\infty }\) problem (48)–(49), (53).

Stage 2. At this stage, we derive solvability conditions of the \(H_{\infty }\) problem (48)–(49), (53). Consider the terminal-value problem for the Riccati matrix differential equation with respect to the matrix \(\widehat{P}(t)\) in the interval \([0,t_f]\):

$$\begin{aligned} \frac{d\widehat{P}(t)}{dt} = -\widehat{P}(t)\widehat{A}(t,\varepsilon ) -\widehat{A}^{T}(t,\varepsilon )\widehat{P}(t) - \widehat{P}(t)S_{w}(t)\widehat{P}(t) - \widehat{D}(t),\ \widehat{P}(t_f)=K.\nonumber \\ \end{aligned}$$
(54)

We are going to show that the existence of the solution \(\widehat{P}(t,\varepsilon )\) to the problem (54) for a given \(\varepsilon \in (0,\varepsilon _{0}]\) in the entire interval \([0,t_f]\) yields the fulfilment of the inequality (53).

For a given \(\varepsilon \in (0,\varepsilon _{0}]\), consider the Lyapunov-like function

$$\begin{aligned} V(z,t,\varepsilon )=z^{T}\widehat{P}(t,\varepsilon )z,\ \ \ z\in E^{n},\ \ \ t\in [0,t_f]. \end{aligned}$$
(55)

Based on (55), consider the function \(V\big [z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ),t,\varepsilon \big ]\). Since \(z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\) is the solution of the initial-value problem (7) with \(u(t)=u_{\varepsilon ,0}^{*}[z(t),t]\), then it is the solution of the initial-value problem (48). Differentiating the function \(V\big [z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ),t,\varepsilon \big ]\) with respect to t, and using (48), (54) and (55) yield

$$\begin{aligned} \frac{dV\big [z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ),t,\varepsilon \big ]}{dt} = \left( \frac{dz_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )}{dt}\right) ^{T}\widehat{P}(t,\varepsilon )z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) \nonumber \\ + \Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\frac{d\widehat{P}(t,\varepsilon )}{dt}z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) \nonumber \\ + \Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\widehat{P}(t,\varepsilon )\frac{dz_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )}{dt} \nonumber \\ = \Big (\widehat{A}(t,\varepsilon )z(t)+F(t)w(t)\Big )^{T}\widehat{P}(t,\varepsilon )z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) \nonumber \\ + \Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\Big [-\widehat{P}(t)\widehat{A}(t,\varepsilon ) -\widehat{A}^{T}(t,\varepsilon )\widehat{P}(t)\nonumber \\ - \widehat{P}(t)S_{w}(t)\widehat{P}(t) - \widehat{D}(t)\Big ]z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) \nonumber \\ + \Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\widehat{P}(t,\varepsilon )\Big (\widehat{A}(t,\varepsilon )z(t)+F(t)w(t)\Big ) \nonumber \\ = w^{T}(t)F^{T}(t)\widehat{P}(t,\varepsilon )z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\nonumber \\ - \Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\widehat{P}(t,\varepsilon )S_{w}(t)\widehat{P}(t,\varepsilon )z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) \nonumber \\ - \Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\widehat{D}(t)z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) + \Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\widehat{P}(t,\varepsilon )F(t)w(t).\nonumber \\ \end{aligned}$$
(56)

Using the function \(w^{*}\big (t,\varepsilon ;w(\cdot )\big ) {\mathop {=}\limits ^{\triangle }} \gamma ^{-2}F^{T}(t)\widehat{P}(t,\varepsilon )z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ),\) and taking into account the expression for \(S_{w}(t)\) (see Eq. (17)), we can rewrite (56) as:

$$\begin{aligned} \frac{dV\big [z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ),t,\varepsilon \big ]}{dt} = -\gamma ^{2}\Big (w(t)- w^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\Big (w(t) - w^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big ) \nonumber \\ - \Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\widehat{D}(t)z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) + \gamma ^{2}w^{T}(t)w(t).\nonumber \\ \end{aligned}$$
(57)

From the Eq. (57), we directly obtain the inequality for all \(t\in [0,t_f]\):

$$ \frac{dV\big [z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ),t,\varepsilon \big ]}{dt} + \Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\widehat{D}(t)z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) - \gamma ^{2}w^{T}(t)w(t) \le 0. $$

Integration of this inequality from \(t=0\) to \(t=t_f\) and use of (55) yield

$$\begin{aligned} \Big (z_{0}^{*}\big (t_f,\varepsilon ;w(\cdot )\big )\Big )^{T}Kz_{0}^{*}\big (t_f,\varepsilon ;w(\cdot )\big ) \nonumber \\ + \int _{0}^{t_f}\Big [\Big (z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\widehat{D}(t)z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) - \gamma ^{2}w^{T}(t)w(t)\Big ]dt \le 0,\nonumber \end{aligned}$$

meaning the fulfilment of the inequality (53) along trajectories of the system (48) for all \(w(t)\in L^{2}[0,t_f; E^{m}]\). This completes the proof of the statement that the existence of the solution \(\widehat{P}(t,\varepsilon )\) to the problem (54) in the entire interval \([0,t_f]\) guarantees the fulfilment of the inequality (53) along trajectories of (48) for all \(w(t)\in L^{2}[0,t_f; E^{m}]\).

Stage 3. At this stage, we show the existence of the solution \(\widehat{P}(t,\varepsilon )\) to the problem (54) in the entire interval \([0,t_f]\). Similarly to the problem (16), (18), we look for the solution of the terminal-value problem (54) in the block form

$$\begin{aligned} \widehat{P}(t,\varepsilon )=\left( \begin{array}{cc} \widehat{P}_{1}(t,\varepsilon )\ \ &{} \varepsilon \widehat{P}_{2}(t,\varepsilon ) \\ &{} \\ \varepsilon \widehat{P}_{2}^{T}(t,\varepsilon )\ &{} \varepsilon \widehat{P}_{3}(t,\varepsilon )\end{array}\right) ,\ \ \ \widehat{P}_{l}^{T}(t,\varepsilon )=\widehat{P}_{l}(t,\varepsilon ),\ \ l=1,3, \end{aligned}$$
(58)

where the matrices \(\widehat{P}_{1}(t,\varepsilon )\), \(\widehat{P}_{2}(t,\varepsilon )\) and \(\widehat{P}_{3}(t,\varepsilon )\) have the dimensions \((n-r+q)\times (n-r+q)\), \((n-r+q)\times \left( r-q\right) \) and \(\left( r-q\right) \times \left( r-q\right) \), respectively. Substitution of the block representations for the matrices \(S_{w}(t)\), \(\widehat{A}(t,\varepsilon )\), \(\widehat{D}(t)\) and \(\widehat{P}(t,\varepsilon )\) (see Eqs. (17), (50), (58)) into the problem (54) converts this problem into the following equivalent problem:

$$\begin{aligned} \frac{d\widehat{P}_{1}(t,\varepsilon )}{dt}=-\widehat{P}_{1}(t,\varepsilon )\widehat{A}_{1}(t)- \widehat{P}_{2}(t,\varepsilon )\widehat{A}_{3}(t,\varepsilon )- \widehat{A}_{1}^{T}(t)\widehat{P}_{1}(t,\varepsilon )- \widehat{A}_{3}^{T}(t,\varepsilon )\widehat{P}_{2}^{T}(t,\varepsilon )\nonumber \\ -\widehat{P}_{1}(t,\varepsilon )S_{w_{1}}(t)\widehat{P}_{1}(t,\varepsilon ) - \varepsilon \widehat{P}_{2}(t,\varepsilon )S_{w_{2}}^{T}(t)\widehat{P}_{1}(t,\varepsilon ) -\varepsilon \widehat{ P}_{1}(t,\varepsilon )S_{w_{2}}(t)\widehat{P}_{2}^{T}(t,\varepsilon )\nonumber \\ - \varepsilon ^{2}\widehat{P}_{2}(t,\varepsilon )S_{w_{3}}(t)\widehat{P}_{2}^{T}(t,\varepsilon ) - \widehat{D}_{1}(t),\ \ \ \ \widehat{P}_{1}(t_f,\varepsilon )=K_1,\nonumber \\ \end{aligned}$$
(59)
$$\begin{aligned} \varepsilon \frac{d\widehat{P}_2(t,\varepsilon )}{dt}= -\widehat{P}_{1}(t,\varepsilon )\widehat{A}_{2}(t) - \widehat{P}_{2}(t,\varepsilon )\widehat{A}_{4}(t,\varepsilon ) - \varepsilon \widehat{A}_{1}^{T}(t)\widehat{P}_{2}(t,\varepsilon )\nonumber \\ - \widehat{A}_{3}^{T}(t,\varepsilon )\widehat{P}_{3}(t,\varepsilon ) -\varepsilon \widehat{P}_{1}(t,\varepsilon )S_{w_{1}}(t)\widehat{P}_{2}(t,\varepsilon ) - \varepsilon ^{2}\widehat{P}_{2}(t,\varepsilon )S_{w_{2}}^{T}(t)\widehat{P}_{2}(t,\varepsilon )\nonumber \\ -\varepsilon \widehat{P}_{1}(t,\varepsilon )S_{w_{2}}(t)\widehat{P}_{3}(t,\varepsilon ) - \varepsilon ^{2}\widehat{P}_{2}(t,\varepsilon )S_{w_{3}}(t)\widehat{P}_{3}(t,\varepsilon ) - \widehat{D}_{2}(t),\ \ \ \ \widehat{P}_{2}(t_f,\varepsilon )=0,\nonumber \\ \end{aligned}$$
(60)
$$\begin{aligned} \varepsilon \frac{d\widehat{P}_3(t,\varepsilon )}{dt}= -\varepsilon \widehat{P}_{2}^{T}(t,\varepsilon )\widehat{A}_{2}(t)- \widehat{P}_{3}(t,\varepsilon )\widehat{A}_{4}(t,\varepsilon )-\varepsilon \widehat{A}_{2}^{T}(t)\widehat{P}_{2}(t,\varepsilon )\nonumber \\ -\widehat{A}_{4}^{T}(t,\varepsilon )\widehat{P}_{3}(t,\varepsilon ) -\varepsilon ^{2}\widehat{P}_{2}^{T}(t,\varepsilon )S_{w_{1}}(t)\widehat{P}_{2}(t,\varepsilon ) - \varepsilon ^{2}\widehat{P}_{3}(t,\varepsilon )S_{w_{2}}^{T}(t)\widehat{P}_{2}(t,\varepsilon )\nonumber \\ -\varepsilon ^{2}\widehat{P}_{2}^{T}(t,\varepsilon )S_{w_{2}}(t)\widehat{P}_{3}(t,\varepsilon ) -\varepsilon ^{2}\widehat{P}_{3}(t,\varepsilon )S_{w_{3}}(t)\widehat{P}_{3}(t,\varepsilon ) -\widehat{D}_{3}(t),\ \ \ \ \widehat{P}_3(t_f,\varepsilon )=0. \nonumber \\ \end{aligned}$$
(61)

Looking for the zero-order asymptotic solution of the problem (59)–(61) in the form \(\widehat{P}_{i,0}(t,\varepsilon ) = \widehat{P}_{i,0}^{o}(t) + \widehat{P}_{i,0}^{b}(\tau )\), \((i = 1,2,3)\), \(\tau = (t - t_f)/\varepsilon \), we obtain similarly to Sect. 5.2

$$\begin{aligned} \widehat{P}_{1,0}^{b}(\tau )\equiv 0,\ \ \ \tau \le 0. \end{aligned}$$
(62)

Furthermore, the terms of the outer solution \(\widehat{P}_{i,0}^{o}(t)\), \((i=1,2,3)\), satisfy the following terminal-value problem for \(t\in [0,t_{f}]\):

$$\begin{aligned} \frac{d\widehat{P}_{1,0}^{o}(t)}{dt}=-\widehat{P}_{1,0}^{o}(t)\widehat{A}_{1}(t)- \widehat{P}_{2,0}^{o}(t )\widehat{A}_{3}(t,0)- \widehat{A}_{1}^{T}(t)\widehat{P}_{1,0}^{o}(t )- \widehat{A}_{3}^{T}(t,0)\big (\widehat{P}_{2,0}^{o}(t)\big )^{T}\nonumber \\ -\widehat{P}_{1,0}^{o}(t )S_{w_{1}}(t)\widehat{P}_{1,0}^{o}(t) - \widehat{D}_{1}(t),\ \ \ \ \widehat{P}_{1,0}^{o}(t_f)=K_1,\nonumber \\ \end{aligned}$$
(63)
$$\begin{aligned} 0 = -\widehat{P}_{1,0}^{o}(t)\widehat{A}_{2}(t) - \widehat{P}_{2,0}^{o}(t)\widehat{A}_{4}(t,0) - \widehat{A}_{3}^{T}(t,0)\widehat{P}_{3,0}^{o}(t) - \widehat{D}_{2}(t), \end{aligned}$$
(64)
$$\begin{aligned} 0 = - \widehat{P}_{3,0}^{o}(t)\widehat{A}_{4}(t,0) - \widehat{A}_{4}^{T}(t,0)\widehat{P}_{3,0}^{o}(t,0) -\widehat{D}_{3}(t). \end{aligned}$$
(65)

Using that \(\widehat{A}_{4}(t,0) = -P_{3,0}^{o}(t) = - \big (D_{2}(t)\big )^{1/2}\), \(\widehat{D}_{3}(t) = 2D_{2}(t)\), we obtain the unique symmetric positive definite solution of (65)

$$\begin{aligned} \widehat{P}_{3,0}^{o}(t) = \big (D_{2}(t)\big )^{1/2} = P_{3,0}^{o}(t). \end{aligned}$$
(66)

Using (66) and the fact that \(\widehat{A}_{2}(t) = A_{2}(t)\), \(\widehat{A}_{3}(t,0)= -\big (P_{2,0}^{o}(t)\big )^{T}\), \(\widehat{D}_{2}(t) = P_{1,0}^{o}(t)A_{2}(t)\), one directly has from (64)

$$\begin{aligned} \widehat{P}_{2,0}^{o}(t) = \widehat{P}_{1,0}^{o}(t)A_{2}(t)\big (D_{2}(t)\big )^{-1/2}. \end{aligned}$$
(67)

Substitution of (67) into (63) and use of (51)–(52) yields the terminal-value problem for \(\hat{P}_{1,0}^{o}(t)\)

$$\begin{aligned} \frac{d\widehat{P}_{1,0}^{o}(t)}{dt} = - \widehat{P}_{1,0}^{o}(t)A_{1}(t) + \widehat{P}_{1,0}^{o}(t)\widetilde{B}G_{q}^{-1}(t)\widetilde{B}^{T}P_{1,0}^{o}(t)\nonumber \\ + \widehat{P}_{1,0}^{o}(t)A_{2}(t)\big (D_{2}(t)\big )^{-1/2}\big (P_{2,0}^{o}(t)\big )^{T} - A_{1}^{T}(t)\widehat{P}_{1,0}^{o}(t) + P_{1,0}^{o}(t)\widetilde{B}G_{q}^{-1}(t)\widetilde{B}^{T}\widehat{P}_{1,0}^{o}(t)\nonumber \\ + P_{2,0}^{o}(t)\big (D_{2}(t)\big )^{-1/2}A_{2}^{T}(t)\widehat{P}_{1,0}(t) - \widehat{P}_{1,0}^{o}(t)S_{w_{1}}(t)\widehat{P}_{1,0}^{o}(t) - D_{1}(t)- \nonumber \\ P_{1,0}^{o}(t)B_{1,0}(t)\Theta ^{-1}(t)B_{1,0}^{T}(t)P_{1,0}^{o}(t),\ \widehat{P}_{1,0}^{o}=K_1.\nonumber \\ \end{aligned}$$
(68)

It is verified directly by substitution of \(P_{1,0}^{o}(t)\) into (68) instead of \(\widehat{P}_{1,0}^{o}(t)\) and using (33), (34), (36) that the terminal-value problem (68) has a solution on the entire interval \([0,t_f]\) and this solution equals to \(P_{1,0}^{o}(t)\), i.e.,

$$\begin{aligned} \widehat{P}_{1,0}^{o}(t) = P_{1,0}^{o}(t),\ \ \ \ t\in [0,t_f]. \end{aligned}$$
(69)

Moreover, due to the linear and quadratic dependence of the right-hand side of the differential equation in (68) on \(\widehat{P}_{1,0}^{o}(t)\), this solution is unique.

For the terms \(\widehat{P}_{2,0}^{b}(\tau )\) and \(\widehat{P}_{3,0}^{b}(\tau )\), similarly to Sect. 5.2, we have the problem

$$ \frac{d\widehat{P}_{2,0}^{b}(\tau )}{d\tau } = - \widehat{P}_{2,0}^{b}(\tau )\widehat{A}_{4}(t_f,0) - \widehat{A}_{3}^{T}(t_f,0)\widehat{P}_{3,0}^{b}(\tau ),\ \ \tau \le 0,\ \ \widehat{P}_{2,0}^{b}(0) = - \widehat{P}_{2,0}^{o}(t_f), $$
$$ \frac{d\widehat{P}_{32,0}^{b}(\tau )}{d\tau } = - \widehat{P}_{3,0}^{b}(\tau )\widehat{A}_{4}(t_f,0) - \widehat{A}_{4}(t_f,0)\widehat{P}_{3,0}^{b}(\tau ),\ \ \tau \le 0,\ \ \widehat{P}_{3,0}^{b}(0) = - \widehat{P}_{3,0}^{o}(t_f). $$

Using (33), (51), (66), (67), we obtain the unique solution of this problem

$$\begin{aligned} \widehat{P}_{2,0}(\tau ) = -K_{1}A_{2}(t_f)\big (D_{2}(t_{f})^{-1/2}\exp \Big (\big (2D_{2}(t_{f})^{-1/2}\tau \Big ),\nonumber \\ \widehat{P}_{3,0}(\tau ) = -\big (D_{2}(t_{f})^{1/2}\exp \Big (\big (2D_{2}(t_{f})^{-1/2}\tau \Big ),\ \ \ \tau \le 0. \end{aligned}$$
(70)

This solution satises the inequalities

$$\begin{aligned} \Vert \widehat{P}_{2,0}^{b}(\tau )\Vert \le c\exp (\beta \tau ),\ \ \ \ \Vert \widehat{P}_{3,0}^{b}(\tau )\Vert \le c\exp (\beta \tau ),\ \ \ \ \tau \le 0, \end{aligned}$$
(71)

where \(c>0\) and \(\beta >0\) are some constants.

Now, based on the Eqs. (62), (66), (67), (69), (70) and the inequalities (71), we obtain (similarly to Lemma 2) the existence of a positive number \(\varepsilon _{1}^{*}\) such that, for all \(\varepsilon \in (0,\varepsilon _{1}^{*}]\), the problem (59)–(61) has the unique solution \(\big \{\widehat{P}_{1}(t,\varepsilon ),\widehat{P}_{2}(t,\varepsilon ),\widehat{P}_{3}(t,\varepsilon )\big \}\) in the entire interval \([0,t_f]\). Since the problem (54) is equivalent to (59)–(61), then it has the unique solution (58) in the entire interval \([0,t_f]\) for all \(\varepsilon \in (0,\varepsilon _{1}^{*}]\). The latter, along with the results of the Stages 1 and 2 of this proof, means that the controller \(u_{\varepsilon ,0}^{*}[z(t),t]\), given by (42), solves the HIPCCP, i.e., the inequality (47) is fulfilled.

Stage 4. Using the equations (8), (14), (15), (42), (43), we obtain

$$\begin{aligned} J_{\varepsilon }\Big (u_{\varepsilon ,0}^{*}[z(t),t],w(t)\Big ) = J\Big (u_{\varepsilon ,0}^{*}[z(t),t],w(t)\Big ) \nonumber \\ + \int _{0}^{t_f}\big [z_{0}^{*}\big (t,\varepsilon ; w(\cdot )\big )\big ]^{T}\big (Q_{0}^{o}(t)\big )^{T}Q_{0}^{o}(t)z_{0}^{*}\big (t,\varepsilon ; w(\cdot )\big )dt. \end{aligned}$$
(72)

This equation, along with the inequality (47), directly yields the inequality (44). This completes the proof of Theorem 2.

Appendix B: Proof of Theorem 3

The proof is based on an auxiliary lemma.

Auxiliary Lemma

Let, for a given \(\varepsilon >0\), \(n\times n\)-matrix-valued function \(\varPhi (t,s,\varepsilon )\), \(0\le s \le t \le t_f\), be the fundamental solution of the system \(dz(t)/dt = \widehat{A}(t,\varepsilon )z(t)\). This means that \(\varPhi (t,s,\varepsilon )\) satisfies the initial-value problem

$$\begin{aligned} \frac{\partial \varPhi (t,s,\varepsilon )}{\partial t} = \widehat{A}(t,\varepsilon )\varPhi (t,s,\varepsilon ),\ \ \ 0\le s \le t \le t_f,\ \ \ \varPhi (s,s,\varepsilon ) = I_{n}. \end{aligned}$$
(73)

Remember that the block matrix \(\widehat{A}(t,\varepsilon )\) is defined in (50)–(51).

Let us partition the matrix \(\varPhi (t,s,\varepsilon )\) into blocks as:

$$\begin{aligned} \varPhi (t,s,\varepsilon ) = \left( \begin{array}{l} \varPhi _{1}(t,s,\varepsilon )\ \ \ \varPhi _{2}(t,s,\varepsilon )\\ \varPhi _{3}(t,s,\varepsilon )\ \ \ \varPhi _{4}(t,s,\varepsilon )\end{array}\right) , \end{aligned}$$
(74)

where the matrices \(\varPhi _{1}(t,s,\varepsilon )\), \(\varPhi _{2}(t,s,\varepsilon )\), \(\varPhi _{3}(t,s,\varepsilon )\) and \(\varPhi _{4}(t,s,\varepsilon )\) are of the dimensions \((n-r+q)\times (n-r+q)\), \((n-r+q)\times (r-q)\), \((r-q)\times (n-r+q)\) and \((r-q)\times (r-q)\), respectively.

Along with the problem (73), we consider the following problem with respect to the \((n-r+q)\times (n-r+q)\)-matrix-valued function \(\varPhi _{0}(t,s)\):

$$\begin{aligned} \frac{d\varPhi _{0}(t,s)}{dt} = A_{0}(t)\varPhi _{0}(t,s),\ \ \ 0\le s \le t \le t_f,\ \ \ \varPhi _{0}(s,s) = I_{n-r+q}, \end{aligned}$$
(75)

where \(A_{0}(t) = \widehat{A}_{1}(t) - \widehat{A}_{2}(t)\widehat{A}_{4}^{-1}(t,0)\widehat{A}_{3}(t,0)\), \(\widehat{A}_{1}(t)\), \(\widehat{A}_{2}(t)\), \(\widehat{A}_{3}(t,\varepsilon )\), \(\widehat{A}_{4}(t,\varepsilon )\) are blocks of of the matrix \(\widehat{A}(t,\varepsilon )\). Since \(\widehat{A}_{4}(t,0)=-P_{3,0}^{o}(t)=-\big (D_{2}(t)\big )^{1/2}\), then \(\widehat{A}_{4}(t,0)\) is invertible. It is clear that the problem (75) has the unique solution \(\varPhi _{0}(t,s)\), \(0\le s \le t \le t_f\).

By virtue of the results of [37] (Lemma 3.1), we have the following assertion.

Lemma 4

Let the assumptions (A1)-(A6), (A8) be valid. Then, there exists a positive number \(\varepsilon _{2}^{*}\) such that, for all \(\varepsilon \in (0,\varepsilon _{2}^{*}]\), the following inequalities are satisfied:

\(\big \Vert \varPhi _{1}(t,s,\varepsilon ) - \varPhi _{0}(t,s)\big \Vert \le a\varepsilon \), \(\big \Vert \varPhi _{2}(t,s,\varepsilon )\big \Vert \le a\varepsilon \), \(\big \Vert \varPhi _{3}(t,s,\varepsilon ) + \widehat{A}_{4}^{-1}(t,0)\widehat{A}_{3}(t,0)\) \(\varPhi _{0}(t,s)\big \Vert \le a\Big [\varepsilon + \exp \Big (- \beta (t-s)/\varepsilon \Big )\Big ]\), \(\big \Vert \varPhi _{4}(t,s,\varepsilon )\big \Vert \le a\Big [\varepsilon + \exp \Big (- \beta (t-s)/\varepsilon \Big )\Big ]\), where \(0\le s \le t \le t_f\); \(a > 0\) and \(\beta > 0\) are some constants independent of \(\varepsilon \).

Main Part of the Proof

Due to the proof of Theorem 2, the vector-valued function \(z_{0}^{*} \big (t,\varepsilon ; w(\cdot )\big )\), \(t\in [0,t_f]\), being the solution of the initial-value problem (7) with \(u(t)=u_{\varepsilon ,0}^{*}[z(t),t]\), also is the solution of the initial-value problem (48).

Since \(\varPhi (t,s,\varepsilon )\) is the fundamental matrix solution of the system \(dz(t)/dt =\) \( \widehat{A}(t,\varepsilon )z(t)\), then the solution of (48) can be represented in the form

$$\begin{aligned} z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )= \int _{0}^{t}\varPhi (t,s,\varepsilon )F(s)w(s)ds,\ \ \ \ t\in [0,t_f]. \end{aligned}$$
(76)

Let us partition the vector \(z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\) into blocks as

$$\begin{aligned} z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )=\mathrm{col}\Big (x_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) , y_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\Big ), \end{aligned}$$
(77)

where \(x_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\in E^{n-r+q}\), \(y_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\in E^{r-q}\).

Substitution of (24), (74) and (77) into (76) yields after a routine algebra

$$\begin{aligned} x_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) = \int _{0}^{t}\big (\varPhi _{1}(t,s,\varepsilon )F_{1}(s) + \varPhi _{2}(t,s,\varepsilon )F_{2}(s)\big )w(s)ds,\ \ \ \ t\in [0,t_f], \end{aligned}$$
(78)
$$\begin{aligned} y_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) = \int _{0}^{t}\big (\varPhi _{3}(t,s,\varepsilon )F_{1}(s) + \varPhi _{4}(t,s,\varepsilon )F_{2}(s)\big )w(s)ds,\ \ \ \ t\in [0,t_f]. \end{aligned}$$
(79)

Using Lemma 4, we obtain the inequalities for all \(0\le s \le t \le t_f\) and \(\varepsilon \in (0,\varepsilon _{2}^{*}]\):

$$\begin{aligned} \big \Vert \big (\varPhi _{1}(t,s,\varepsilon )F_{1}(s) + \varPhi _{2}(t,s,\varepsilon )F_{2}(s)\big ) - \varPhi _{0}(t,s)F_{1}(s)\big \Vert \le a\varepsilon , \end{aligned}$$
(80)
$$\begin{aligned} \big \Vert \big (\varPhi _{3}(t,s,\varepsilon )F_{1}(s) + \varPhi _{4}(t,s,\varepsilon )F_{2}(s)\big ) + \widehat{A}_{4}^{-1}(t,0)\widehat{A}_{3}(t,0)\varPhi _{0}(t,s)F_{1}(s)\big \Vert \nonumber \\ \le a\Big [\varepsilon + \exp \Big (- \beta (t-s)/\varepsilon \Big )\Big ], \end{aligned}$$
(81)

where \(a>0\) is some constant independent of \(\varepsilon \).

Consider the following vector-valued functions of the dimensions \(n-r+q\) and \(r-q\), respectively: \(\varphi _{x}\big (t;w(\cdot )\big )=\int _{0}^{t}\varPhi _{0}(t,s)F_{1}(s)w(s)ds\) and \(\varphi _{y}\big (t;w(\cdot )\big )= \) \(- \widehat{A}_{4}^{-1}(t,0)\widehat{A}_{3}(t,0)\varphi _{x}\big (t;w(\cdot )\big )\), \(t\in [0,t_f]\). We have that

$$\begin{aligned} \widehat{A}_{3}(t,0)\varphi _{x}\big (t;w(\cdot )\big ) + \widehat{A}_{4}(t,0)\varphi _{y}\big (t;w(\cdot )\big ) = 0,\ \ \ t\in [0,t_f]. \end{aligned}$$
(82)

Moreover, using the Eqs. (78)–(79), the inequalities (80)–(81) and the Cauchy-Bunyakovsky-Schwarz integral inequality, we directly obtain the inequalities

$$\begin{aligned} \big \Vert x_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) - \varphi _{x}\big (t;w(\cdot )\big )\big \Vert \le a_{1}\varepsilon ^{1/2}\Vert w(t)\Vert _{L^{2}},\nonumber \\ \big \Vert y_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) - \varphi _{y}\big (t;w(\cdot )\big )\big \Vert \le a_{1}\varepsilon ^{1/2}\Vert w(t)\Vert _{L^{2}},\ \ \ t\in [0,t_f],\ \ \varepsilon \in (0,\varepsilon _{2}^{*}]\, , \end{aligned}$$
(83)

where \(a_{1}>0\) is some constant independent of \(\varepsilon \) and \(w(\cdot )\).

Let us denote: \(\Delta x\big (t,\varepsilon ;w(\cdot )\big ) {\mathop {=}\limits ^{\triangle }} x_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) - \varphi _{x}\big (t;w(\cdot )\big )\), \(\Delta y\big (t,\varepsilon ;w(\cdot )\big ) {\mathop {=}\limits ^{\triangle }} y_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) - \varphi _{y}\big (t;w(\cdot )\big )\). Then, the use of the Eqs. (43), (77), (82) and of the fact that \(\widehat{A}_{3}(t,0)=-\big (P_{2,0}^{o}(t)\big )^{T}\), \(\widehat{A}_{4}(t,0)=-P_{3,0}^{o}(t)\) (see Eq. (51)) yields

$$\begin{aligned} \big [z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big )\big ]^{T}\big (Q_{0}^{o}(t)\big )^{T}Q_{0}^{o}(t)z_{0}^{*}\big (t,\varepsilon ;w(\cdot )\big ) = \nonumber \\ \Big (\varphi _{x}\big (t;w(\cdot )\big ) + \Delta x\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}P_{2,0}^{o}(t)\big (P_{2,0}^{o}(t)\big )^{T}\Big (\varphi _{x}\big (t;w(\cdot )\big ) + \Delta x\big (t,\varepsilon ;w(\cdot )\big )\Big ) \nonumber \\ + 2\Big (\varphi _{x}\big (t;w(\cdot )\big ) + \Delta x\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}P_{2,0}^{o}(t)P_{3,0}^{o}(t)\Big (\varphi _{y}\big (t;w(\cdot )\big ) + \Delta y\big (t,\varepsilon ;w(\cdot )\big )\Big ) \nonumber \\ + \Big (\varphi _{y}\big (t;w(\cdot )\big ) + \Delta y\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\big (P_{3,0}^{o}(t)\big )^{2}\Big (\varphi _{y}\big (t;w(\cdot )\big ) + \Delta y\big (t,\varepsilon ;w(\cdot )\big )\Big ) \nonumber \\ = \Big (\Delta x\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}P_{2,0}^{o}(t)\big (P_{2,0}^{o}(t)\big )^{T}\Delta x\big (t,\varepsilon ;w(\cdot )\big )\nonumber \\ + 2\Big (\Delta x\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}P_{2,0}^{o}(t)P_{3,0}^{o}(t)\Delta y\big (t,\varepsilon ;w(\cdot )\big ) \nonumber \\ + \Big (\Delta y\big (t,\varepsilon ;w(\cdot )\big )\Big )^{T}\big (P_{3,0}^{o}(t)\big )^{2}\Delta y\big (t,\varepsilon ;w(\cdot )\big ).\nonumber \\ \end{aligned}$$
(84)

The Eq. (84), along with the inequalities (83), yields the inequality

$$\begin{aligned} \big \Vert \big [z_{0}^{*}\big (t,\varepsilon ; w(\cdot )\big )\big ]^{T} \big (Q_{0}^{o}(t)\big )^{T}Q_{0}^{o}(t)z_{0}^{*}\big (t,\varepsilon ; w(\cdot )\big )\big \Vert \le a_{2}\varepsilon \big (\Vert w(t)\Vert _{L^{2}}\big )^{2}, \end{aligned}$$
(85)

where \(t\in [0,t_f]\); \(\varepsilon \in (0,\varepsilon _{2}^{*}]\); \(a_{2}>0\) is some constant independent of \(\varepsilon \) and \(w(\cdot )\).

The inequality (85) immediately yields the inequality (45), which completes the proof of Theorem 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glizer, V.Y., Kelis, O. (2020). Finite-Horizon \(H_{\infty }\) Control Problem with Singular Control Cost. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_2

Download citation

Publish with us

Policies and ethics