Skip to main content

Anisotropic Magnetic Spin Interactions of Transition Metal Complexes and Metalloenzymes from Spectroscopy and Quantum Chemistry

  • Chapter
  • First Online:
Transition Metals in Coordination Environments

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 29))

  • 1369 Accesses

Abstract

Spectroscopic investigations of the interaction of a spin magnetic moment with an external magnetic field reveal insight into the electronic structure, e.g. the composition of the occupied molecular orbitals of the system, the oxidation state of a possible transition metal and its coordination environment. For paramagnetic systems, electron spin resonance (ESR) and related techniques probe the interaction between electron and nuclear spins, provide information about the spatial distribution of the spin density and allow identifying binding partners which are often not resolved structurally, for example hydrogen atoms. In particular, diagonalization of the electron Zeeman and electron-nuclear hyperfine interaction matrices does not only give their principal values but also their magnetic principal axes and allows making statements about the spatial arrangement of coordinating atoms and ligands. The advancement of computational approaches to calculate the parameters of the effective Spin Hamiltonian such as the electronic g-tensors and hyperfine tensors and their comparison with experiment supports the analysis and interpretation of complex magnetic resonance spectra. This is discussed here for g- and hyperfine tensors and zero-field splitting tensors for selected examples including transition metal containing model complexes and metalloenzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, Oxford

    Google Scholar 

  2. Mabbs FE, Collinson D (1992) Electron paramagnetic resonance of d transition metal compounds. Elsevier, Amsterdam

    Google Scholar 

  3. Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 0:142–152

    Google Scholar 

  4. Walsh CT, Orme-Johnson WH (1987) Nickel enzymes. Biochemistry 26:4901–4906

    Article  CAS  Google Scholar 

  5. Lubitz W, Ogata H, Rudiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148

    Article  CAS  Google Scholar 

  6. Lubitz W, Reijerse E, van Gastel M (2007) NiFe and FeFe hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365

    Article  CAS  Google Scholar 

  7. Siegbahn PEM, Tye JW, Hall MB (2007) Computational studies of NiFe and FeFe hydrogenases. Chem Rev 107:4414–4435

    Article  CAS  Google Scholar 

  8. Stein M, Lubitz W (2002) Quantum chemical calculations of NiFe hydrogenase. Curr Opin Chem Biol 6:243–249

    Article  CAS  Google Scholar 

  9. Hille R (2002) Molybdenum and tungsten in biology. Trends Biochem Sci 27:360–367

    Article  CAS  Google Scholar 

  10. Igarashi RY, Seefeldt LC (2003) Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase. Crit Rev Biochem Mol Biol 38:351–384

    Article  CAS  Google Scholar 

  11. Metz S, Thiel W (2011) Theoretical studies on the reactivity of molybdenum enzymes. Coord Chem Rev 255:1085–1103

    Article  CAS  Google Scholar 

  12. Richards RL (1996) Reactions of small molecules at transition metal sites: studies relevant to nitrogenase, an organometallic enzyme. Coord Chem Rev 154:83–97

    Article  CAS  Google Scholar 

  13. Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267

    Article  CAS  Google Scholar 

  14. Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816

    Article  CAS  Google Scholar 

  15. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn–SOD (SOD1), Mn–SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  CAS  Google Scholar 

  16. Nordberg J, Arner ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  Google Scholar 

  17. Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4-Cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943

    Article  CAS  Google Scholar 

  18. Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34:619–631

    Article  CAS  Google Scholar 

  19. Siegbahn PEM (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42:1871–1880

    Article  CAS  Google Scholar 

  20. Griffith JS (1960) Some investigations in the theory of open-shell ions.1 the spin-hamiltonian. Mol Physics 3:79–89

    Article  CAS  Google Scholar 

  21. Abragam A, Pryce MHL (1951) Theory of the nuclear hyperfine structure of paramagnetic resonance spectra in crystals. Proc R Soc London Ser Math Phys Sci 205:135–153

    CAS  Google Scholar 

  22. Harriman JE (1978) Theoretical foundations of electron spin resonance. Academic Press, New York

    Google Scholar 

  23. Patchkovskii S, Schreckenbach G (2004) Calculation of EPR g‐tensors with density functional theory. In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters

    Google Scholar 

  24. Autschbach J (2010) Relativistic effects on magnetic resonance parameters and other properties of inorganic molecules and metal complexes. In: Barysz M, Ishikawa Y (eds) Relativistic methods for chemists. Springer, Netherlands, Amsterdam, pp 521–598

    Chapter  Google Scholar 

  25. Reiher M, Wolf A (2015) Relativistic quantum chemistry. Wiley, Weinheim

    Google Scholar 

  26. Dyall KG (1997) Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified dirac equation. J Chem Phys 106:9618–9626

    Article  CAS  Google Scholar 

  27. Dyall KG (1994) An exact separation of the spin-free and spin-dependent terms of the dirac–coulomb–breit hamiltonian. J Chem Phys 100:2118–2127

    Article  CAS  Google Scholar 

  28. Kaupp M, Bühl M, Malkin VG (2004) Calculation of NMR and EPR parameters. Wiley, Weinheim

    Book  Google Scholar 

  29. Autschbach J (2010) Relativistic effects on magnetic resonance parameters and other properties of inorganic molecules and metal complexes, pp 521–598

    Google Scholar 

  30. Neese F (2017) Quantum chemistry and EPR parameters. In: Harris RK, Wasylishen RL (eds) eMagRes

    Google Scholar 

  31. Neese F (2009) Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord Chem Rev 253:526–563

    Article  CAS  Google Scholar 

  32. Neese F, Solomon EI (2002) Interpretation and calculation of spin-hamiltonian parameters in transition metal complexes. In: Miller JS, Drillon M (eds) Magnetism: molecules to materials IV. Wiley, Weinheim, pp 345–466

    Google Scholar 

  33. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  34. Baerends EJ, Ziegler T, Atkins AJ, Autschbach J, Bashford D, Baseggio O, Brces, A, Bickelhaupt FM, Bo C, Boerritger PM, Cavallo L, Daul C, Chong DP, Chulhai DV, Deng L, Dickson RM, Dieterich JM, Ellis DE, van Faassen M, Ghysels A, Giammona A, van Gisbergen SJA, Goez A, Gtz AW, Gusarov S, Harris FE, van den Hoek P, Hu Z, Jacob CR, Jacobsen H, Jensen L, Joubert L, Kaminski JW, van Kessel G, Knig C, Kootstra F, Kovalenko A, Krykunov M, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Peeples CA, Philipsen PHT, Post D, Pye CC, Ramanantoanina H, Ramos P, Ravenek W, Rodrguez JI, Ros P, Rger R, Schipper PRT, Schlns D, van Schoot H, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Sol ADF (2017) SCM, theoretical chemistry. Vrije Universiteit, Amsterdam, The Netherlands. https://www.scm.com

  35. Neese F (2011) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    Article  Google Scholar 

  36. Neese F (2017) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8: e1327

    Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T., Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT, US

    Google Scholar 

  38. Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenæs E, Høst S, Høyvik I-M, Iozzi MF, Jansík B, Jensen HJA, Jonsson D, Jørgensen P, Kauczor J, Kirpekar S, Kjærgaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnæs OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Sałek P, Samson CCM, de Merás AS, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thøgersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Ågren H (2013) The dalton quantum chemistry program system. Wiley Interdiscip Rev Comput Mol Sci 4:269–284

    Article  Google Scholar 

  39. Malkin VG, Malkina OL, Reviakine R, Arbouznikov AV, Kaupp M, Schimmelpfennig B, Malkin I, Helgaker T, Ruud K (2010) Respect

    Google Scholar 

  40. Van Yperen-De Deyne A, Pauwels E, Van Speybroeck V, Waroquier M (2012) Accurate spin–orbit and spin-other-orbit contributions to the g-tensor for transition metal containing systems. Phys Chem Chem Phys 14:10690–10704

    Article  Google Scholar 

  41. Neese F (2003) Quantum chemical calculations of spectroscopic properties of metalloproteins and model compounds: EPR and Moessbauer properties. Curr Opin Chem Biol 7:125–135

    Article  CAS  Google Scholar 

  42. Lushington GH, Bundgen P, Grein F (1995) Ab-initio study of molecular g-tensors. Int J Q Chem 55:377–392

    Article  CAS  Google Scholar 

  43. Lushington GH, Grein F (1996) Complete to second-order Ab initio level calculations of electronic g-tensors. Theor. Chim. Acta 93:259–267

    CAS  Google Scholar 

  44. Lushington GH (2000) Small closed-form CI expansions for electronic g-tensor calculations. J Phys Chem A 104:2969–2974

    Article  CAS  Google Scholar 

  45. Jayatilaka D (1998) Electron spin resonance g tensors from general Hartree-Fock calculations. J Chem Phys 108:7587–7594

    Article  CAS  Google Scholar 

  46. Vahtras O, Minaev B, Agren H (1997) Ab initio calculations of electronic g-factors by means of multi-configuration response theory. Chem Phys Lett 281:186–192

    Article  CAS  Google Scholar 

  47. Rinkevicius Z, Telyatnyk L, Salek P, Vahtras O, Agren H (2003) Restricted density-functional linear response theory calculations of electronic g-tensors. J Chem Phys 119:10489–10496

    Article  CAS  Google Scholar 

  48. Schreckenbach G, Ziegler T (1997) Calculation of the g-tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory. J Phys Chem A 101:3388–3399

    Article  CAS  Google Scholar 

  49. van Lenthe E, Wormer PES, van der Avoird A (1997) Density functional calculations of molecular g-tensors in the zero-order regular approximation for relativistic effects. J Chem Phys 107:2488–2498

    Article  Google Scholar 

  50. Malkina OL, Vaara J, Schimmelpfennig B, Munzarová M, Malkin VG, Kaupp M (2000) Density functional calculations of electronic g-tensors using spin−orbit pseudo-potentials and mean-field all-electron spin−orbit operators. J Am Chem Soc 122:9206–9218

    Article  CAS  Google Scholar 

  51. Kaupp M, Reviakine R, Malkina OL, Arbuznikov A, Schimmelpfennig B, Malkin VG (2002) Calculation of electronic g-tensors for transition metal complexes using hybrid density functionals and atomic mean field spin–orbit operators. J Comput Chem 23:794–803

    Article  CAS  Google Scholar 

  52. Cherry PJ, Komorovsky S, Malkin VG, Malkina OL (2017) Calculations of the EPR g-tensor using unrestricted two- and four-component relativistic approaches within the HF and DFT frameworks. Mol Phys 115:75–89

    Article  CAS  Google Scholar 

  53. Neese F (2001) Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory. J Chem Phys 115:11080–11096

    Article  CAS  Google Scholar 

  54. Neese F (2001) Configuration interaction calculation of electronic g tensors in transition metal complexes. Int J Q Chem 83:104–114

    Article  CAS  Google Scholar 

  55. Patchkovskii S, Ziegler T (2001) Calculation of the EPR g-tensors of high-spin radicals with density functional theory. J Phys Chem A 105:5490–5497

    Article  CAS  Google Scholar 

  56. Neyman KM, Ganyushin DI, Matveev AV, Nasluzov VA (2002) Calculation of electronic g-tensors using a relativistic density functional Douglas-Kroll method. J Phys Chem A 106:5022–5030

    Article  CAS  Google Scholar 

  57. Tatchen J, Kleinschmidt M, Marian CM (2009) Calculating electron paramagnetic resonance g-matrices for triplet state molecules from multi-reference spin–orbit configuration interaction wave functions. J Chem Phys 130:154106

    Article  Google Scholar 

  58. Vancoillie S, Malmqvist P-Å, Pierloot K (2007) Calculation of EPR g tensors for transition-metal complexes based on multi-configurational perturbation Theory (CASPT2). Chem Phys Chem 8:1803–1815

    Article  CAS  Google Scholar 

  59. Neese F (2007) Analytic derivative calculation of electronic g-tensors based on multi-reference configuration interaction wave functions. Mol Phys 105:2507–2514

    Article  CAS  Google Scholar 

  60. Gauss J, Kállay M, Neese F (2009) Calculation of electronic g-tensors using coupled cluster theory. J Phys Chem A 113:11541–11549

    Article  CAS  Google Scholar 

  61. Sayfutyarova ER, Chan GKL (2018) Electron paramagnetic resonance g-tensors from state interaction spin–orbit coupling density matrix renormalization group. J Chem Phys 148

    Google Scholar 

  62. Schreckenbach G, Ziegler T (1998) Density functional calculations of NMR chemical shifts and ESR g-tensors. Theor Chem Acc 99:71–82

    Article  CAS  Google Scholar 

  63. Patchkovskii S, Ziegler T (1999) Prediction of electron paramagnetic resonance g-tensors of transition metal complexes using density functional theory: first applications to some axial d(1)MEX(4) systems. J Chem Phys 111:5730–5740

    Article  CAS  Google Scholar 

  64. van Lenthe E, van der Avoird A, Wormer PES (1998) Density functional calculations of molecular hyperfine interactions in the zero order regular approximation for relativistic effects. J Chem Phys 108:4783–4796

    Article  Google Scholar 

  65. Hess BA, Marian CM, Wahlgren U, Gropen O (1996) A mean-field spin–orbit method applicable to correlated wavefunctions. Chem Phys Lett 251:365–371

    Article  CAS  Google Scholar 

  66. Neese F (2005) Efficient and accurate approximations to the molecular spin–orbit coupling operator and their use in molecular g-tensor calculations. J Chem Phys 122

    Google Scholar 

  67. Rauchfuss TB (2004) Synthesis of transition metal dithiolenes. In: Stiefel EI (ed) Progress in inorganic chemistry: synthesis, properties, and applications, pp 1–54

    Google Scholar 

  68. Harrop TC, Mascharak PK (2006) Model complexes of Ni-containing enzymes. Wiley, KGaA, pp 309–329

    Google Scholar 

  69. Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB (2016) Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem Rev 116:8693–8749

    Article  CAS  Google Scholar 

  70. Maki AH, Davison A, Edelstein N, Holm RH (1964) Electron paramagnetic resonance studies of electronic structures of Bis(maleonitriledithiolato) copper(II)-nickel(III)-cobalt(II)-rhodium(II)-complexes. J Am Chem Soc 86:4580–4458X

    Article  CAS  Google Scholar 

  71. Stein M, van Lenthe E, Baerends EJ, Lubitz W (2001) g- and a-tensor calculations in the zero-order approximation for relativistic effects of Ni complexes Ni(mnt)(2)(-) and Ni(CO)(3)H as model complexes for the active center of NiFe -hydrogenase. J Phys Chem A 105:416–425

    Article  CAS  Google Scholar 

  72. Huyett JE, Choudhury SB, Eichhorn DM, Bryngelson PA, Maroney MJ, Hoffman BM (1998) Pulsed ENDOR and ESEEM Study of [Bis(maleonitriledithiolato)nickel]: an investigation into the ligand electronic structure. Inorg Chem 37:1361–1367

    Article  CAS  Google Scholar 

  73. Singh SK, Atanasov M, Neese F (2018) Challenges in multireference perturbation theory for the calculations of the g-tensor of first-row transition-metal complexes. J Chem Theory Comput 14:4662–4677

    Article  CAS  Google Scholar 

  74. Cosper MM, Neese F, Astashkin AV, Carducci MD, Raitsimring AM, Enemark JH (2005) Determination of the g-tensors and their orientations for cis, trans-(L-N2S2)MoVOX (X = Cl, SCH2Ph) by single-crystal epr spectroscopy and molecular orbital calculations. Inorg Chem 44:1290–1301

    Article  CAS  Google Scholar 

  75. Fritscher J, Hrobárik P, Kaupp M (2007) Computational studies of electron paramagnetic resonance parameters for paramagnetic molybdenum complexes. 1. Method validation on small and medium-sized systems. J Phys Chem B 111:4616–4629

    Article  CAS  Google Scholar 

  76. Fritscher J, Hrobárik P, Kaupp M (2007) Computational studies of epr parameters for paramagnetic molybdenum complexes. II. larger MoV systems relevant to molybdenum enzymes. Inorg Chem 46:8146–8161

    Article  CAS  Google Scholar 

  77. Foerster S, Stein M, Brecht M, Ogata H, Higuchi Y, Lubitz W (2003) Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Am Chem Soc 125:83–93

    Article  CAS  Google Scholar 

  78. Trofanchuk O, Stein M, Gessner C, Lendzian F, Higuchi Y, Lubitz W (2000) Single crystal EPR studies of the oxidized active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Biol Inorg Chem 5:36–44

    Article  CAS  Google Scholar 

  79. Kampa M, Pandelia M-E, Lubitz W, van Gastel M, Neese F (2013) A metal-metal bond in the light-induced state of [NiFe] hydrogenases with relevance to hydrogen evolution. J Am Chem Soc 135:3915–3925

    Article  CAS  Google Scholar 

  80. Gessner C, Trofanchuk O, Kawagoe K, Higuchi Y, Yasuoka N, Lubitz W (1996) Single crystal EPR study of the Ni center of NiFe hydrogenase. Chem Phys Lett 256:518–524

    Article  CAS  Google Scholar 

  81. van Gastel M, Stein M, Brecht M, Schröder O, Lendzian F, Bittl R, Ogata H, Higuchi Y, Lubitz W (2006) A single-crystal ENDOR and density functional theory study of the oxidized states of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Biol Inorg Chem 11:41–51

    Article  CAS  Google Scholar 

  82. Stein M, Lubitz W (2001) DFT calculations of the electronic structure of the paramagnetic states Ni–A, Ni–B and Ni–C of [NiFe] hydrogenase. Phys Chem Chem Phys 3:2668–2675

    Article  CAS  Google Scholar 

  83. Carmieli R, Larsen TM, Reed GH, Zein S, Neese F, Goldfarb D (2007) The catalytic Mn2 + sites in the enolase-inhibitor complex: crystallography, single-crystal EPR, and DFT calculations. J Am Chem Soc 129:4240–4252

    Article  CAS  Google Scholar 

  84. Neese F (2006) Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. J Am Chem Soc 128:10213–10222

    Article  CAS  Google Scholar 

  85. Sundararajan M, Neese F (2012) Detailed QM/MM study of the electron paramagnetic resonance parameters of nitrosyl myoglobin. J Chem Theory Comput 8:563–574

    Article  CAS  Google Scholar 

  86. Radoul M, Sundararajan M, Potapov A, Riplinger C, Neese F, Goldfarb D (2010) Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations. Phys Chem Chem Phys 12:7276–7289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support by the Max Planck Society for the Advancement of Science is acknowledged. Part of this work was also financed by the EU COST Action CM1305 ‘ECOSTBio’ and the EU-program ERDF (European Regional Development Fund) of the German Federal State Saxony-Anhalt within the Research Center of Dynamic Systems (CDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stein, M. (2019). Anisotropic Magnetic Spin Interactions of Transition Metal Complexes and Metalloenzymes from Spectroscopy and Quantum Chemistry. In: Broclawik, E., Borowski, T., Radoń, M. (eds) Transition Metals in Coordination Environments. Challenges and Advances in Computational Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-11714-6_2

Download citation

Publish with us

Policies and ethics