Skip to main content

Integral Identities for Polyanalytic Functions

  • Chapter
  • First Online:
Topics in Classical and Modern Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 421 Accesses

Abstract

In this paper we overview some results from the theory of polyanalytic functions. We consider the problem of the mean value of polyanalytic functions of certain types. Similar problems were studied by M.O. Reade, M.B. Balk, and V.V. Volchkov. The cases of polygonal and circular domains with a polynomial weight are studied. We consider the results that are versions of the classical Cauchy, Morera, and Fedoroff theorems for polyanalitic functions under some conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Daghighi, S.G. Krantz, Local maximum modulus property for polyanalytic functions. Complex Anal. Oper. Theory 10(2), 401–408 (2016)

    Article  MathSciNet  Google Scholar 

  2. V. Danchenko, Cauchy and Poisson formulas for polyanalytic functions and their applications. (Russian). Izv. Vyssh. Uchebn. Zaved. Mat. 60(1), 15–26 (2016)

    Google Scholar 

  3. S. Kakutani, M. Nagumo, On the functional equation \(\sum _{\nu =0}^{n-1}f(z+e^{2\nu \pi i}\xi )+nf(n)\). Zenkoku Sugaku Danwakai 66, 10–12 (1935)

    Google Scholar 

  4. H.R. Malonek, Selected topics in hypercomplex function theory. Clifford algebras and potential theory. Univ. Joensuu Dept. Math. Rep. Ser. 7, 111–150 (2004)

    Google Scholar 

  5. D. Pompeiu, Sur une classe de fonctions d’une variable complexe. Rendi Circ Mat. Palermo 33(1), 108–113 (1912)

    Article  Google Scholar 

  6. I.I. Privalov, Subharmonic Functions (M.-L., ONTI NKTP USSR, 1937), p. 199

    Google Scholar 

  7. T. Ramsey, Y. Weit, Mean values and classes of harmonic functions. Math. Proc. Camb. Philos. Soc. 96, 501–505 (1984)

    Article  MathSciNet  Google Scholar 

  8. M.O. Reade, On areolar monogenic functions. Bull. Am. Math. Soc. 53, 98–103 (1947)

    Article  MathSciNet  Google Scholar 

  9. M.O. Reade, A theorem of Fedoroff. Duke Math. J. 18(1), 105–109 (1951)

    Google Scholar 

  10. O.D. Trofimenko, A mean-value theorem for polyanalytic functions. Proc. Inst. Appl. Math. Mech. 17, 194–196 (2008)

    Google Scholar 

  11. O.D. Trofymenko, Generalization of the mean value theorem for polyanalytic functions in the case of a circle or disk. Visnyk DonNU, Ser. A: Nat. Sci. 1, 28–31 (2009)

    Google Scholar 

  12. O.D. Trofymenko, Analog of the mean-value theorem for polynomials of special form. Ukr. Math. J. 63(5), 815–826 (2011)

    Article  MathSciNet  Google Scholar 

  13. O.D. Trofymenko, Two-radii theorem for solutions of some mean value equations. Mat. Stud. 40(2), 137–143 (2013)

    Google Scholar 

  14. O.D. Trofymenko, Convolution equations and mean-value theorems for solutions of linear elliptic equations with constant coefficients in the complex plane. Ukr. Mat. Visn., 14(2), 279–294 (2017)

    Google Scholar 

  15. V.V. Volchkov, Morera type theorems on the unit disc. Anal. Math. 20, 49–63 (1994)

    Article  MathSciNet  Google Scholar 

  16. V.V. Volchkov, New mean-value theorems for polyanalytic functions (Russian). Mat. Zametki 56(3), 20–28, 157 (1994); translation in Math. Notes 56(3–4) (1994) 1995, 889–895

    Google Scholar 

  17. V.V. Volchkov, Integral Geometry and Convolution Equations (Kluwer Academic, Dordrecht, 2003), p. 454

    Google Scholar 

  18. V.V. Volchkov, V.V. Volchkov, Offbeat Integral Geometry on Symmetric Spaces (Birkhäuser/Springer, Basel, 2013), p. x+592

    Book  Google Scholar 

  19. J.L. Walsh, A mean value theorem for polynomials and harmonic polynomials. Bull. Am. Math. Soc. 42, 923–930 (1936)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The study was carried out within the Fundamental Research Programme funded by the Ministry of Education and Science of Ukraine, Project No. 0118U003138. The authors want to thank the referee. We highly appreciate his/her comments and suggestions, which significantly contributed to improving the quality of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia Minenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minenkova, A., Trofimenko, O. (2019). Integral Identities for Polyanalytic Functions. In: Abell, M., Iacob, E., Stokolos, A., Taylor, S., Tikhonov, S., Zhu, J. (eds) Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-12277-5_17

Download citation

Publish with us

Policies and ethics