Skip to main content

A Method for Comprehensive Proteomic Analysis of Human Faecal Samples to Investigate Gut Dysbiosis in Patients with Cystic Fibrosis

  • Chapter
  • First Online:
Emerging Sample Treatments in Proteomics

Abstract

Background: This chapter reports the evaluation of two shotgun metaproteomic workflows. The methods were developed to investigate gut dysbiosis via analysis of the faecal microbiota from patients with cystic fibrosis (CF). We aimed to set up an unbiased and effective method to extract the entire proteome, i.e. to extract sufficient bacterial proteins from the faecal samples in combination with a maximum of host proteins giving information on the disease state.

Methods: Two protocols were compared; the first method involves an enrichment of the bacterial proteins while the second method is a more direct method to generate a whole faecal proteome extract. The different extracts were analysed using denaturing polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry aiming a maximal coverage of the bacterial protein content in faecal samples.

Results and conclusions: In all extracts, microbial proteins are detected, and in addition, nonbacterial proteins are detected in all samples providing information about the host status. Our study demonstrates the huge influence of the used protein extraction method on the obtained result and shows the need for a standardised and appropriate sample preparation for metaproteomic analysis. To address questions on the health status of the patients, a whole protein extract is preferred over a method to enrich the bacterial fraction. In addition, the method of the whole protein fraction is faster, which gives the possibility to analyse more biological replicates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since 2013, the database has been dramatically increased, e.g. by inclusion of several metagenomics projects. Therefore, the number of identified peptides/proteins could probably be improved by researching data against recent updates of the database. However, the aim of this paper is to compare protocols, and the main conclusions do not depend on the database used.

References

  1. Dethlefsen L, Eckburg PB, Bik EM et al (2006) Assembly of the human intestinal microbiota. Trends Ecol Evol 21:517–523

    Article  Google Scholar 

  2. Gill SR, Pop M, DeBoy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  Google Scholar 

  3. Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 21:357–365

    Article  CAS  Google Scholar 

  4. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  Google Scholar 

  5. Sekirov I, Russell SL, Antunes LC et al (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  Google Scholar 

  6. Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    Article  CAS  Google Scholar 

  7. Ubeda C, Pamer EG (2012) Antibiotics, microbiota, and immune defense. Trends Immunol 33:459

    Article  CAS  Google Scholar 

  8. Mortensen PB, Clausen MR (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl 216:132–148

    Article  CAS  Google Scholar 

  9. Barcenilla A, Pryde SE, Martin JC et al (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661

    Article  CAS  Google Scholar 

  10. Duytschaever G, Huys G, Bekaert M et al (2013) Dysbiosis of bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota. J Cyst Fibros 12:206–215

    Article  Google Scholar 

  11. Tannock GW (2008) The search for disease-associated compositional shifts in bowel bacterial communities of humans. Trends Microbiol 16:488–495

    Article  CAS  Google Scholar 

  12. Larsen N, Vogensen FK, van den Berg FW et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085

    Article  Google Scholar 

  13. van Tongeren SP, Slaets JP, Harmsen HJ et al (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71:6438–6442

    Article  Google Scholar 

  14. Balamurugan R, Rajendiran E, George S et al (2008) Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 23:1298–1303

    Article  CAS  Google Scholar 

  15. Davies JC, Bilton D (2009) Bugs, biofilms, and resistance in cystic fibrosis. Respir Care 54:628–640

    Article  Google Scholar 

  16. Wilschanski M, Durie PR (2007) Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut 56:1153–1163

    Article  CAS  Google Scholar 

  17. O’Brien S, Mulcahy H, Fenlon H et al (1993) Intestinal bile acid malabsorption in cystic fibrosis. Gut 34:1137–1141

    Article  Google Scholar 

  18. Duytschaever G, Huys G, Bekaert M et al (2011) Cross-sectional and longitudinal comparisons of the predominant fecal microbiota compositions of a group of pediatric patients with cystic fibrosis and their healthy siblings. Appl Environ Microbiol 77:8015–8024

    Article  CAS  Google Scholar 

  19. Bruzzese E, Raia V, Gaudiello G et al (2004) Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment Pharmacol Ther 20:813–819

    Article  CAS  Google Scholar 

  20. Hawrelak JA, Myers SP (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev 9:180–197

    PubMed  Google Scholar 

  21. Modolell I, Guarner L, Malagelada JR (2002) Digestive system involvement in cystic fibrosis. Pancreatology 2:12–16

    Article  CAS  Google Scholar 

  22. Verberkmoes NC, Russell AL, Shah M et al (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189

    Article  CAS  Google Scholar 

  23. Rooijers K, Kolmeder C, Juste C et al (2011) An iterative workflow for mining the human intestinal metaproteome. BMC Genomics 12:6

    Article  CAS  Google Scholar 

  24. Kolmeder CA, de Been M, Nikkila J et al (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7:e29913

    Article  CAS  Google Scholar 

  25. Keller A, Nesvizhskii AI, Kolker E et al (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  CAS  Google Scholar 

  26. Nesvizhskii AI, Keller A, Kolker E et al (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  CAS  Google Scholar 

  27. Mesuere B, Devreese B, Debyser G et al (2012) Unipept: tryptic peptide-based biodiversity analysis of metaproteome samples. J Proteome Res 11:5773–5780

    Article  CAS  Google Scholar 

  28. Conesa A, Gotz S, Garcia-Gomez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  Google Scholar 

  29. Quevillon E, Silventoinen V, Pillai S et al (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  CAS  Google Scholar 

  30. Myhre S, Tveit H, Mollestad T et al (2006) Additional gene ontology structure for improved biological reasoning. Bioinformatics 22:2020–2027

    Article  CAS  Google Scholar 

  31. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  CAS  Google Scholar 

  32. Detlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818

    Article  Google Scholar 

  33. Liu C, Finegold SM, Song Y et al (2008) Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:1896–1902

    Article  CAS  Google Scholar 

  34. Gerritsen J, Smidt H, Rijkers GT et al (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209–240

    Article  Google Scholar 

  35. Ben-Amor K, Heilig H, Smidt H et al (2005) Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol 71:4679–4689

    Article  CAS  Google Scholar 

  36. Bahl MI, Bergstrom A, Licht TR (2012) Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol Lett 329:193–197

    Article  CAS  Google Scholar 

  37. Neilson KA, Ali NA, Muralidharan S et al (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  CAS  Google Scholar 

  38. Okazaki N, Takahashi N, Kojima S et al (2002) Protocadherin LKC, a new candidate for a tumor suppressor of colon and liver cancers, its association with contact inhibition of cell proliferation. Carcinogenesis 23:1139–1148

    Article  CAS  Google Scholar 

  39. Apajalahti JH, Sarkilahti LK, Maki BR et al (1998) Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analysis of community structure in the gastrointestinal tract of broiler chickens. Appl Environ Microbiol 64:4084–4088

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kolmeder CA, de Vos WM (2014) Metaproteomics of our microbiome - developing insight in function and activity in man and model systems. J Proteome 97:3–16

    Article  CAS  Google Scholar 

  41. Ham BM, Yang F, Jayachandran H et al (2008) The influence of sample preparation and replicate analyses on HeLa cell phosphoproteome coverage. J Proteome Res 7:2215–2221

    Article  CAS  Google Scholar 

  42. Zhang X, Chen W, Ning Z et al (2017) Deep Metaproteomics approach for the study of human microbiomes. Anal Chem 89:9407–9415

    Article  CAS  Google Scholar 

  43. Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  Google Scholar 

  44. Duytschaever G, Huys G, Boulanger L et al (2013) Amoxicillin-clavulanic acid resistance in fecal Enterobacteriaceae from patients with cystic fibrosis and healthy siblings. J Cyst Fibros 12:780

    Article  CAS  Google Scholar 

  45. Schippa S, Iebba V, Santangelo F et al (2013) Cystic fibrosis transmembrane conductance regulator (CFTR) allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients. PLoS One 8:e61176

    Article  CAS  Google Scholar 

  46. Del Campo R, Garriga M, Perez-Aragon A et al (2014) Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros 13:716–722

    Google Scholar 

  47. Sokol H, Seksik P, Furet JP et al (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189

    Article  CAS  Google Scholar 

  48. Willing BP, Dicksved J, Halfvarson J et al (2010) A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139:1844–1854 e1841

    Article  Google Scholar 

  49. Debyser G, Mesuere B, Clement L et al (2016) Faecal proteomics: a tool to investigate dysbiosis and inflammation in patients with cystic fibrosis. J Cyst Fibros 15:242–250

    Article  CAS  Google Scholar 

  50. Ladirat SE, Schols HA, Nauta A et al (2013) High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition. J Microbiol Methods 92:387–397

    Article  CAS  Google Scholar 

  51. Jernberg C, Lofmark S, Edlund C et al (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66

    Article  CAS  Google Scholar 

  52. Jakobsson HE, Jernberg C, Andersson AF et al (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5:e9836

    Article  Google Scholar 

  53. Perez-Cobas AE, Gosalbes MJ, Friedrichs A et al (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62:1591–1601

    Article  CAS  Google Scholar 

  54. Turroni F, Peano C, Pass DA et al (2012) Diversity of Bifidobacteria within the infant gut microbiota. PLoS One 7:e36957

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grant G.0638.10 from Research Foundation Flanders (FWO). PD acknowledges the support of Ghent University (MRP Bioinformatics: from nucleotides to networks). The authors thank Dr. Kris Moreel for the generous help with the LC-MS/MS analyses on the FT-ICR-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Devreese .

Editor information

Editors and Affiliations

Supplementary Data

Supplementary Data

Supplementary files can be downloaded from http://users.ugent.be/~bdevrees/.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debyser, G. et al. (2019). A Method for Comprehensive Proteomic Analysis of Human Faecal Samples to Investigate Gut Dysbiosis in Patients with Cystic Fibrosis. In: Capelo-Martínez, JL. (eds) Emerging Sample Treatments in Proteomics. Advances in Experimental Medicine and Biology(), vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-12298-0_6

Download citation

Publish with us

Policies and ethics