Skip to main content

Empirical Similarity for Absent Data Generation in Imbalanced Classification

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 69))

Included in the following conference series:

Abstract

When the training data in a two-class classification problem is overwhelmed by one class, most classification techniques fail to correctly identify the data points belonging to the underrepresented class. This paper proposes Similarity-based Imbalanced Classification (SBIC) that simultaneously optimizes the weights of the empirical similarity function and identifies the locations of absent data points, i.e. unobserved data points from the minority class. Similar to cost-sensitive approaches, SBIC operates on an algorithmic level to handle imbalanced structures and similar to synthetic data generation approaches, it utilizes the properties of unobserved data points. The main contribution of the paper is to show that a similarity function can be used to tackle imbalanced datasets. The results of applying the proposed method to imbalanced datasets suggests that SBIC is comparable to, and in some cases outperforms, other commonly used classification techniques for imbalanced datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  2. Byon, E., Shrivastava, A.K., Ding, Y.: A classification procedure for highly imbalanced class sizes. IIE Trans. 42(4), 288–303 (2010)

    Article  Google Scholar 

  3. Pourhabib, A., Mallick, B.K., Ding, Y.: Absent data generating classifier for imbalanced class sizes. J. Mach. Learn. Res. 16, 2695–2724 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müllers, K.R.: Fisher discriminant analysis with kernels, in neural networks for signal processing IX. In: Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48, August 1999

    Google Scholar 

  5. Gilboa, I., Lieberman, O., Schmeidler, D.: A similarity-based approach to prediction. J. Econom. 162(1), 124–131 (2011)

    Article  MathSciNet  Google Scholar 

  6. Gilboa, I., Lieberman, O., Schmeidler, D.: Empirical similarity. Rev. Econ. Stat. 88(3), 433–444 (2006)

    Article  Google Scholar 

  7. Park, C., Huang, J.Z., Ding, Y.: A computable plug-in estimator of minimum volume sets for novelty detection. Oper. Res. 58(5), 1469–1480 (2010)

    Article  MathSciNet  Google Scholar 

  8. Efron, B.: The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 38. SIAM, Philadelphia (1982)

    Book  Google Scholar 

  9. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 42(4), 463–484 (2012)

    Article  Google Scholar 

  10. Chen, J.J., Tsai, C.A., Young, J.F., Kodell, R.L.: Classification ensembles for unbalanced class sizes in predictive toxicology. SAR QSAR Environ. Res. 16(6), 517–529 (2005)

    Article  Google Scholar 

  11. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  12. Han, H., Wang, W.Y., Mao, B.H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. Advances in Intelligent Computing. Lecture Notes in Computer Science, vol. 3644, pp. 878–887. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Chen, S., He, H., Garcia, E.A.: RAMOBoost: ranked minority oversampling in boosting. IEEE Trans. Neural Netw. 21(10), 1624–1642 (2010)

    Article  Google Scholar 

  14. Barua, S., Islam, M.M., Yao, X., Murase, K.: MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans. Knowl. Data Eng. 26(2), 405–425 (2014)

    Article  Google Scholar 

  15. Ramentol, E., Caballero, Y., Bello, R., Herrera, F.: SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory. Knowl. Inf. Syst. 33(2), 245–265 (2012)

    Article  Google Scholar 

  16. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 973–978 (2001)

    Google Scholar 

  17. Masnadi-Shirazi, H., Vasconcelos, N.: Risk minimization, probability elicitation, and cost-sensitive SVMs. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 759–766 (2010)

    Google Scholar 

  18. Zhou, Z.-H., Liu, X.-Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2006)

    Article  Google Scholar 

  19. Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40(12), 3358–3378 (2007)

    Article  Google Scholar 

  20. Li, Q.P.: Speaker Authentication. Springer, Heidelberg (2012)

    Book  Google Scholar 

  21. Xie, S., Imani, M., Dougherty, E.R., Braga-Neto, U.M.: Nonstationary linear discriminant analysis. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers, pp. 161–165, October 2017

    Google Scholar 

  22. de Mantaras, R.L., Armengol, E.: Machine learning from examples: inductive and lazy methods. Data Knowl. Eng. 25(1), 99–123 (1998)

    Article  Google Scholar 

  23. Billot, A., Gilboa, I., Schmeidler, D.: Axiomatization of an exponential similarity function. Math. Soc. Sci. 55(2), 107–115 (2008)

    Article  MathSciNet  Google Scholar 

  24. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000)

    Article  MathSciNet  Google Scholar 

  25. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  26. Liu, X.-Y., Wu, J., Zhou, Z.-H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. B Cybern. 39(2), 539–550 (2009)

    Article  Google Scholar 

  27. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  28. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  29. Veropoulos, K., Campbell, C., Cristianini, N., et al.: Controlling the sensitivity of support vector machines. In: Proceedings of the International Joint Conference on AI, pp. 55–60 (1999)

    Google Scholar 

  30. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/mllastaccessed07/2014

  31. Center for evidence-based medicine. http://www.cebm.brown.edu/static/imbalanced-datasets.zip (2014). Accessed July 2014

  32. Dems̆ar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was partly supported by OSU Foundation for the National Energy Solutions Institute - Smart Energy Source, grant 20-96680. This work was completed utilizing the High Performance Computing Center facilities of Oklahoma State University at Stillwater.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Pourhabib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pourhabib, A. (2020). Empirical Similarity for Absent Data Generation in Imbalanced Classification. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-12388-8_70

Download citation

Publish with us

Policies and ethics