Skip to main content

Calcium Signaling in the Heart

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

The aim of this chapter is to discuss evidence concerning the many roles of calcium ions, Ca2+, in cell signaling pathways that control heart function. Before considering details of these signaling pathways, the control of contraction in ventricular muscle by Ca2+ transients accompanying cardiac action potentials is first summarized, together with a discussion of how myocytes from the atrial and pacemaker regions of the heart diverge from this basic scheme. Cell signaling pathways regulate the size and timing of the Ca2+ transients in the different heart regions to influence function. The simplest Ca2+ signaling elements involve enzymes that are regulated by cytosolic Ca2+. Particularly important examples to be discussed are those that are stimulated by Ca2+, including Ca2+-calmodulin-dependent kinase (CaMKII), Ca2+ stimulated adenylyl cyclases, Ca2+ stimulated phosphatase and NO synthases. Another major aspect of Ca2+ signaling in the heart concerns actions of the Ca2+ mobilizing agents, inositol trisphosphate (IP3), cADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, (NAADP). Evidence concerning roles of these Ca2+ mobilizing agents in different regions of the heart is discussed in detail. The focus of the review will be on short term regulation of Ca2+ transients and contractile function, although it is recognized that Ca2+ regulation of gene expression has important long term functional consequences which will also be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin WK, Bolton EL, Cortopassi WA, Wang Y, O’Brien F, Maciejewska M et al (2017) Synthesis of the Ca2+-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: role in beta-adrenoceptor signaling. J Biol Chem 292(32):13243–13257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205

    Article  CAS  PubMed  Google Scholar 

  3. MacLeod KT (2016) Recent advances in understanding cardiac contractility in health and disease. F1000 Res 5:1770

    Article  Google Scholar 

  4. Dewenter M, von der Lieth A, Katus HA, Backs J (2017) Calcium signaling and transcriptional regulation in cardiomyocytes. Circ Res 121(8):1000–1020

    Article  CAS  PubMed  Google Scholar 

  5. Harada M, Luo X, Murohara T, Yang B, Dobrev D, Nattel S (2014) MicroRNA regulation and cardiac calcium signaling: role in cardiac disease and therapeutic potential. Circ Res 114(4):689–705

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Greener ID, Inada S, Nikolski VP, Yamamoto M, Hancox JC et al (2008) Computer three-dimensional reconstruction of the atrioventricular node. Circ Res 102(8):975–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  CAS  PubMed  Google Scholar 

  8. Aston D, Capel RA, Ford KL, Christian HC, Mirams GR, Rog-Zielinska EA et al (2017) High resolution structural evidence suggests the sarcoplasmic reticulum forms microdomains with acidic stores (lysosomes) in the heart. Sci Rep 7:40620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venturi E, Pitt S, Galfre E, Sitsapesan R (2012) From eggs to hearts: what is the link between cyclic ADP-ribose and ryanodine receptors? Cardiovasc Ther 30(2):109–116

    Article  CAS  PubMed  Google Scholar 

  10. Lim G, Venetucci L, Eisner DA, Casadei B (2008) Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling. Cardiovasc Res 77(2):256–264

    Article  CAS  PubMed  Google Scholar 

  11. O’Brien F, Venturi E, Sitsapesan R (2015) The ryanodine receptor provides high throughput Ca2+−release but is precisely regulated by networks of associated proteins: a focus on proteins relevant to phosphorylation. Biochem Soc Trans 43(3):426–433

    Article  CAS  PubMed  Google Scholar 

  12. Camors E, Valdivia HH (2014) CaMKII regulation of cardiac ryanodine receptors and inositol triphosphate receptors. Front Pharmacol 5:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lukyanenko V, Chikando A, Lederer WJ (2009) Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol 41(10):1957–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams GS, Boyman L, Lederer WJ (2015) Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35–45

    Article  CAS  PubMed  Google Scholar 

  15. Hohendanner F, Maxwell JT, Blatter LA (2015) Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria. Channels 9(3):129–138

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262(5134):740–744

    Article  CAS  PubMed  Google Scholar 

  17. Cannell MB, Kong CH, Imtiaz MS, Laver DR (2013) Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J 104(10):2149–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wescott AP, Jafri MS, Lederer WJ, Williams GS (2016) Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling. J Mol Cell Cardiol 92:82–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sobie EA, Williams GSB, Lederer WJ (2017) Ambiguous interactions between diastolic and SR Ca2+ in the regulation of cardiac Ca2+ release. J Gen Physiol 149(9):847–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rios E (2017) Perspectives on “control of Ca release from within the cardiac sarcoplasmic reticulum”. J Gen Physiol 149(9):833–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones PP, Guo W, Chen SRW (2017) Control of cardiac ryanodine receptor by sarcoplasmic reticulum luminal Ca(2). J Gen Physiol 149(9):867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ching LL, Williams AJ, Sitsapesan R (2000) Evidence for Ca2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ Res 87(3):201–206

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell MR, Powell T, Terrar DA, Twist VW (1983) Characteristics of the second inward current in cells isolated from rat ventricular muscle. Proc R Soc Lond Ser B Biol Sci 219(1217):447–469

    Article  CAS  Google Scholar 

  24. Sitsapesan R, Montgomery RA, MacLeod KT, Williams AJ (1991) Sheep cardiac sarcoplasmic reticulum calcium-release channels: modification of conductance and gating by temperature. J Physiol 434:469–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee P, Wang K, Woods CE, Yan P, Kohl P, Ewart P et al (2012) Cardiac electrophysiological imaging systems scalable for high-throughput drug testing. Pflugers Arch: Eur J Physiol 464(6):645–656

    Article  CAS  Google Scholar 

  26. Winter J, Bishop MJ, Wilder CDE, O’Shea C, Pavlovic D, Shattock MJ (2018) Sympathetic nervous regulation of calcium and action potential alternans in the intact heart. Front Physiol 9:16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eisner DA, Caldwell JL, Kistamas K, Trafford AW (2017) Calcium and excitation-contraction coupling in the heart. Circ Res 121(2):181–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Janvier NC, Harrison SM, Boyett MR (1997) The role of inward Na(+)-Ca2+ exchange current in the ferret ventricular action potential. J Physiol 498(Pt 3):611–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Hara T, Virag L, Varro A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7(5):e1002061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. White E, Terrar DA (1992) Inactivation of Ca current during the action potential in guinea-pig ventricular myocytes. Exp Physiol 77(1):153–164

    Article  CAS  PubMed  Google Scholar 

  31. Linz KW, Meyer R (1998) Control of L-type calcium current during the action potential of guinea-pig ventricular myocytes. J Physiol 513(Pt 2):425–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blatter LA (2017) The intricacies of atrial calcium cycling during excitation-contraction coupling. J Gen Physiol 149(9):857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Collins TP, Terrar DA (2012) Ca2+-stimulated adenylyl cyclases regulate the L-type Ca2+ current in guinea-pig atrial myocytes. J Physiol 590(8):1881–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maxwell JT, Blatter LA (2017) A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes. J Physiol 595(12):3835–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brandenburg S, Kohl T, Williams GS, Gusev K, Wagner E, Rog-Zielinska EA et al (2016) Axial tubule junctions control rapid calcium signaling in atria. J Clin Invest 126(10):3999–4015

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled system of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 106(4):659–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Capel RA, Terrar DA (2015) The importance of Ca2+-dependent mechanisms for the initiation of the heartbeat. Front Physiol 6:80

    PubMed  PubMed Central  Google Scholar 

  38. Mesirca P, Torrente AG, Mangoni ME (2015) Functional role of voltage gated Ca2+ channels in heart automaticity. Front Physiol 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  39. DiFrancesco D (2015) HCN4, sinus bradycardia and atrial fibrillation. Arrhythmia Electrophysiol Rev 4(1):9–13

    Article  Google Scholar 

  40. Chen W, Wang R, Chen B, Zhong X, Kong H, Bai Y et al (2014) The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+−triggered arrhythmias. Nat Med 20(2):184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toyoda F, Mesirca P, Dubel S, Ding WG, Striessnig J, Mangoni ME et al (2017) CaV1.3 L-type Ca2+ channel contributes to the heartbeat by generating a dihydropyridine-sensitive persistent Na(+) current. Sci Rep 7(1):7869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanders L, Rakovic S, Lowe M, Mattick PA, Terrar DA (2006) Fundamental importance of Na+-Ca2+ exchange for the pacemaking mechanism in guinea-pig sino-atrial node. J Physiol 571(Pt 3):639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kapoor N, Tran A, Kang J, Zhang R, Philipson KD, Goldhaber JI (2015) Regulation of calcium clock-mediated pacemaking by inositol-1,4,5-trisphosphate receptors in mouse sinoatrial nodal cells. J Physiol 593(12):2649–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rigg L, Heath BM, Cui Y, Terrar DA (2000) Localisation and functional significance of ryanodine receptors during beta-adrenoceptor stimulation in the guinea-pig sino-atrial node. Cardiovasc Res 48(2):254–264

    Article  CAS  PubMed  Google Scholar 

  45. Maier LS (2012) Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the heart. Adv Exp Med Biol 740:685–702

    Article  CAS  PubMed  Google Scholar 

  46. Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110(12):1661–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gray CB, Heller BJ (2014) CaMKIIdelta subtypes: localization and function. Front Pharmacol 5:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mustroph J, Maier LS, Wagner S (2014) CaMKII regulation of cardiac K channels. Front Pharmacol 5:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu Y, Anderson ME (2014) CaMKII in sinoatrial node physiology and dysfunction. Front Pharmacol 5:48

    PubMed  PubMed Central  Google Scholar 

  50. Hund TJ, Mohler PJ (2015) Role of CaMKII in cardiac arrhythmias. Trends Cardiovasc Med 25(5):392–397

    Article  CAS  PubMed  Google Scholar 

  51. Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M et al (2015) Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 308(10):H1177–H1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnston AS, Lehnart SE, Burgoyne JR (2015) Ca2+ signaling in the myocardium by (redox) regulation of PKA/CaMKII. Front Pharmacol 6:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anderson ME (2015) Oxidant stress promotes disease by activating CaMKII. J Mol Cell Cardiol 89(Pt B):160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng N, Anderson ME (2017) CaMKII is a nodal signal for multiple programmed cell death pathways in heart. J Mol Cell Cardiol 103:102–109

    Article  CAS  PubMed  Google Scholar 

  55. Richard S, Perrier E, Fauconnier J, Perrier R, Pereira L, Gomez AM et al (2006) ‘Ca2+-induced Ca2+ entry’ or how the L-type Ca2+ channel remodels its own signalling pathway in cardiac cells. Prog Biophys Mol Biol 90(1–3):118–135

    Article  CAS  PubMed  Google Scholar 

  56. Xu L, Lai D, Cheng J, Lim HJ, Keskanokwong T, Backs J et al (2010) Alterations of L-type calcium current and cardiac function in CaMKII{delta} knockout mice. Circ Res 107(3):398–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ferrero P, Said M, Sanchez G, Vittone L, Valverde C, Donoso P et al (2007) Ca2+/calmodulin kinase II increases ryanodine binding and Ca2+−induced sarcoplasmic reticulum Ca2+ release kinetics during beta-adrenergic stimulation. J Mol Cell Cardiol 43(3):281–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. DeSantiago J, Maier LS, Bers DM (2002) Frequency-dependent acceleration of relaxation in the heart depends on CaMKII, but not phospholamban. J Mol Cell Cardiol 34(8):975–984

    Article  CAS  PubMed  Google Scholar 

  59. Pereira L, Metrich M, Fernandez-Velasco M, Lucas A, Leroy J, Perrier R et al (2007) The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 583(Pt 2):685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bers DM, Grandi E (2009) Calcium/calmodulin-dependent kinase II regulation of cardiac ion channels. J Cardiovasc Pharmacol 54(3):180–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nerbonne JM (2011) Repolarizing cardiac potassium channels: multiple sites and mechanisms for CaMKII-mediated regulation. Heart Rhythm 8(6):938–941

    Article  PubMed  PubMed Central  Google Scholar 

  62. Grandi E, Herren AW (2014) CaMKII-dependent regulation of cardiac Na(+) homeostasis. Front Pharmacol 5:41

    PubMed  PubMed Central  Google Scholar 

  63. Belardinelli L, Giles WR, Rajamani S, Karagueuzian HS, Shryock JC (2015) Cardiac late Na(+) current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm 12(2):440–448

    Article  PubMed  Google Scholar 

  64. Luthi A, McCormick DA (1999) Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production. Nat Neurosci 2(7):634–641

    Article  CAS  PubMed  Google Scholar 

  65. Halls ML, Cooper DM (2011) Regulation by Ca2+−signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 3(1):a004143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang H, Zhang M (2012) The role of Ca(2)(+)-stimulated adenylyl cyclases in bidirectional synaptic plasticity and brain function. Rev Neurosci 23(1):67–78

    Article  CAS  PubMed  Google Scholar 

  67. Mattick P, Parrington J, Odia E, Simpson A, Collins T, Terrar D (2007) Ca2+−stimulated adenylyl cyclase isoform AC1 is preferentially expressed in guinea-pig sino-atrial node cells and modulates the I(f) pacemaker current. J Physiol 582(Pt 3):1195–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Younes A, Lyashkov AE, Graham D, Sheydina A, Volkova MV, Mitsak M et al (2008) Ca2+ -stimulated basal adenylyl cyclase activity localization in membrane lipid microdomains of cardiac sinoatrial nodal pacemaker cells. J Biol Chem 283(21):14461–14468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boink GJ, Nearing BD, Shlapakova IN, Duan L, Kryukova Y, Bobkov Y et al (2012) Ca2+-stimulated adenylyl cyclase AC1 generates efficient biological pacing as single gene therapy and in combination with HCN2. Circulation 126(5):528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Timofeyev V, Myers RE, Kim HJ, Woltz RL, Sirish P, Heiserman JP et al (2013) Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res 112(12):1567–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207(4426):19–27

    Article  CAS  PubMed  Google Scholar 

  72. Lukyanenko YO, Younes A, Lyashkov AE, Tarasov KV, Riordon DR, Lee J et al (2016) Ca2+/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function. J Mol Cell Cardiol 98:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR (2015) Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 89(9):1401–1438

    Article  CAS  PubMed  Google Scholar 

  74. Knight WE, Chen S, Zhang Y, Oikawa M, Wu M, Zhou Q et al (2016) PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction. Proc Natl Acad Sci U S A 113(45):E7116–E7E25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837, 37a–37d

    Article  CAS  PubMed  Google Scholar 

  76. Casadei B (2006) The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp Physiol 91(6):943–955

    Article  CAS  PubMed  Google Scholar 

  77. Zhang YH (2017) Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress. F1000 Res 6:742

    Article  CAS  Google Scholar 

  78. Fabiato A (1992) Two kinds of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac cells. Adv Exp Med Biol 311:245–262

    Article  CAS  PubMed  Google Scholar 

  79. Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W et al (2000) Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol: CB 10(15):939–942

    Article  CAS  PubMed  Google Scholar 

  80. Zima AV, Blatter LA (2004) Inositol-1,4,5-trisphosphate-dependent Ca2+ signalling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol 555(Pt 3):607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yao Y, Choi J, Parker I (1995) Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in xenopus oocytes. J Physiol 482(Pt 3):533–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li X, Zima AV, Sheikh F, Blatter LA, Chen J (2005) Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ Res 96(12):1274–1281

    Article  CAS  PubMed  Google Scholar 

  83. Wang YG, Dedkova EN, Ji X, Blatter LA, Lipsius SL (2005) Phenylephrine acts via IP3-dependent intracellular NO release to stimulate L-type Ca2+ current in cat atrial myocytes. J Physiol 567(Pt 1):143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Collins TP, Mikoshiba K, Terrar DA (2007) Possible novel mechanism for the positive inotropic action of alpha-1 adrenoceptor agonists in guinea-pig isolated atrial myocytes. Biophys J:433A–433A

    Google Scholar 

  85. Terrar DA, Capel RA, Collins TP, Rajasumdaram S, Ayagamar T, Burton RAB (2018) Cross talk between IP3 and adenylyl cyclase signaling pathways in cardiac atrial Myocytes. Biophys J 114(3):466A–466A

    Article  Google Scholar 

  86. Kockskamper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD (2008) Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 45(2):128–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793(6):933–940

    Article  CAS  PubMed  Google Scholar 

  88. Hohendanner F, McCulloch AD, Blatter LA, Michailova AP (2014) Calcium and IP3 dynamics in cardiac myocytes: experimental and computational perspectives and approaches. Front Pharmacol 5:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Garcia MI, Boehning D (2017) Cardiac inositol 1,4,5-trisphosphate receptors. Biochim Biophys Acta 1864(6):907–914

    Article  CAS  Google Scholar 

  90. Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA (2008) IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 294(2):H596–H604

    Article  CAS  PubMed  Google Scholar 

  91. Subedi KP, Son MJ, Chidipi B, Kim SW, Wang J, Kim KH et al (2017) Signaling pathway for endothelin-1- and phenylephrine-induced cAMP response element binding protein activation in rat ventricular Myocytes: role of inositol 1,4,5-Trisphosphate receptors and CaMKII. Cell Physiol Biochem 41(1):399–412

    Article  CAS  PubMed  Google Scholar 

  92. Hirose M, Stuyvers B, Dun W, Ter Keurs H, Boyden PA (2008) Wide long lasting perinuclear Ca2+ release events generated by an interaction between ryanodine and IP3 receptors in canine Purkinje cells. J Mol Cell Cardiol 45(2):176–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zima AV, Bare DJ, Mignery GA, Blatter LA (2007) IP3-dependent nuclear Ca2+ signalling in the mammalian heart. J Physiol 584(Pt 2):601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ju YK, Liu J, Lee BH, Lai D, Woodcock EA, Lei M et al (2011) Distribution and functional role of inositol 1,4,5-trisphosphate receptors in mouse sinoatrial node. Circ Res 109(8):848–857

    Article  CAS  PubMed  Google Scholar 

  95. Ju YK, Woodcock EA, Allen DG, Cannell MB (2012) Inositol 1,4,5-trisphosphate receptors and pacemaker rhythms. J Mol Cell Cardiol 53(3):375–381

    Article  CAS  PubMed  Google Scholar 

  96. Hohendanner F, Walther S, Maxwell JT, Kettlewell S, Awad S, Smith GL et al (2015) Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol 593(6):1459–1477

    Article  CAS  PubMed  Google Scholar 

  97. Kim JC, Woo SH (2015) Shear stress induces a longitudinal Ca2+ wave via autocrine activation of P2Y1 purinergic signalling in rat atrial myocytes. J Physiol 593(23):5091–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Son MJ, Kim JC, Kim SW, Chidipi B, Muniyandi J, Singh TD et al (2016) Shear stress activates monovalent cation channel transient receptor potential melastatin subfamily 4 in rat atrial myocytes via type 2 inositol 1,4,5-trisphosphate receptors and Ca2+ release. J Physiol 594(11):2985–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee HC (2001) Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol 41:317–345

    Article  PubMed  Google Scholar 

  100. Higashida H, Salmina AB, Olovyannikova RY, Hashii M, Yokoyama S, Koizumi K et al (2007) Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem Int 51(2–4):192–199

    Article  CAS  PubMed  Google Scholar 

  101. Lee HC (2012) Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem 287(38):31633–31640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wei W, Graeff R, Yue J (2014) Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway. World J Biol Chem 5(1):58–67

    Article  PubMed  PubMed Central  Google Scholar 

  103. Galione A (2015) A primer of NAADP-mediated Ca2+ signalling: from sea urchin eggs to mammalian cells. Cell Calcium 58(1):27–47

    Article  CAS  PubMed  Google Scholar 

  104. Rakovic S, Terrar DA (2002) Calcium signaling by cADPR in cardiac myocytes. In: Lee HC (ed) Cyclic ADP-ribose and NAADP. Structures, metabolism and functions. Kluwer, Dordecht, pp 319–341

    Chapter  Google Scholar 

  105. Terrar DA (2015) The roles of NAADP, two-pore channels and lysosomes in Ca2+ signaling in cardiac muscle. Messenger 4:23–33

    Article  Google Scholar 

  106. Meszaros LG, Bak J, Chu A (1993) Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364(6432):76–79

    Article  CAS  PubMed  Google Scholar 

  107. Sitsapesan R, McGarry SJ, Williams AJ (1994) Cyclic ADP-ribose competes with ATP for the adenine nucleotide binding site on the cardiac ryanodine receptor Ca2+-release channel. Circ Res 75(3):596–600

    Article  CAS  PubMed  Google Scholar 

  108. Rusinko N, Lee HC (1989) Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+−mobilizing activity. J Biol Chem 264(20):11725–11731

    CAS  PubMed  Google Scholar 

  109. Walseth TF, Aarhus R, Zeleznikar RJ Jr, Lee HC (1991) Determination of endogenous levels of cyclic ADP-ribose in rat tissues. Biochim Biophys Acta 1094(1):113–120

    Article  CAS  PubMed  Google Scholar 

  110. Meszaros V, Socci R, Meszaros LG (1995) The kinetics of cyclic ADP-ribose formation in heart muscle. Biochem Biophys Res Commun 210(2):452–456

    Article  CAS  PubMed  Google Scholar 

  111. Higashida H, Egorova A, Higashida C, Zhong ZG, Yokoyama S, Noda M et al (1999) Sympathetic potentiation of cyclic ADP-ribose formation in rat cardiac myocytes. J Biol Chem 274(47):33348–33354

    Article  CAS  PubMed  Google Scholar 

  112. Kolstad TR, Stokke MK, Stang E, Brorson SH, William LE, Sejersted OM (2015) Serca located in the junctional SR shapes calcium release in cardiac myocytes. Biophys J 108(2):503A–503A

    Article  Google Scholar 

  113. Lewis AM, Aley PK, Roomi A, Thomas JM, Masgrau R, Garnham C et al (2012) Beta-adrenergic receptor signaling increases NAADP and cADPR levels in the heart. Biochem Biophys Res Commun 427(2):326–329

    Article  CAS  PubMed  Google Scholar 

  114. Higashida H, Zhang J, Hashii M, Shintaku M, Higashida C, Takeda Y (2000) Angiotensin II stimulates cyclic ADP-ribose formation in neonatal rat cardiac myocytes. Biochem J 352(Pt 1):197–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ferrero E, Lo Buono N, Horenstein AL, Funaro A, Malavasi F (2014) The ADP-ribosyl cyclases--the current evolutionary state of the ARCs. Front Biosci 19:986–1002

    Article  CAS  Google Scholar 

  116. Gul R, Kim SY, Park KH, Kim BJ, Kim SJ, Im MJ et al (2008) A novel signaling pathway of ADP-ribosyl cyclase activation by angiotensin II in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 295(1):H77–H88

    Article  CAS  PubMed  Google Scholar 

  117. Gul R, Park JH, Kim SY, Jang KY, Chae JK, Ko JK et al (2009) Inhibition of ADP-ribosyl cyclase attenuates angiotensin II-induced cardiac hypertrophy. Cardiovasc Res 81(3):582–591

    Article  CAS  PubMed  Google Scholar 

  118. Gul R, Park DR, Shawl AI, Im SY, Nam TS, Lee SH et al (2016) Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) mediate Ca2+ signaling in cardiac hypertrophy induced by beta-adrenergic stimulation. PLoS One 11(3):e0149125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kannt A, Sicka K, Kroll K, Kadereit D, Gogelein H (2012) Selective inhibitors of cardiac ADPR cyclase as novel anti-arrhythmic compounds. Naunyn Schmiedeberg’s Arch Pharmacol 385(7):717–727

    Article  CAS  Google Scholar 

  120. Walseth TF, Lee HC (1993) Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim Biophys Acta 1178(3):235–242

    Article  CAS  PubMed  Google Scholar 

  121. Rakovic S, Galione A, Ashamu GA, Potter BV, Terrar DA (1996) A specific cyclic ADP-ribose antagonist inhibits cardiac excitation-contraction coupling. Curr Biol: CB 6(8):989–996

    Article  CAS  PubMed  Google Scholar 

  122. Iino S, Cui Y, Galione A, Terrar DA (1997) Actions of cADP-ribose and its antagonists on contraction in guinea pig isolated ventricular myocytes. Influence Temp Circ Res 81(5):879–884

    Article  CAS  Google Scholar 

  123. Cui Y, Galione A, Terrar DA (1999) Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochem J 342(Pt 2):269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Macgregor AT, Rakovic S, Galione A, Terrar DA (2007) Dual effects of cyclic ADP-ribose on sarcoplasmic reticulum Ca2+ release and storage in cardiac myocytes isolated from guinea-pig and rat ventricle. Cell Calcium 41(6):537–546

    Article  CAS  PubMed  Google Scholar 

  125. Prakash YS, Kannan MS, Walseth TF, Sieck GC (2000) cADP ribose and [Ca2+](i) regulation in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 279(4):H1482–H1489

    Article  CAS  PubMed  Google Scholar 

  126. Guo X, Laflamme MA, Becker PL (1996) Cyclic ADP-ribose does not regulate sarcoplasmic reticulum Ca2+ release in intact cardiac myocytes. Circ Res 79(1):147–151

    Article  CAS  PubMed  Google Scholar 

  127. Lukyanenko V, Gyorke I, Wiesner TF, Gyorke S (2001) Potentiation of Ca2+ release by cADP-ribose in the heart is mediated by enhanced SR Ca2+ uptake into the sarcoplasmic reticulum. Circ Res 89(7):614–622

    Article  CAS  PubMed  Google Scholar 

  128. Gomez AM, Cheng H, Lederer WJ, Bers DM (1996) Ca2+ diffusion and sarcoplasmic reticulum transport both contribute to [Ca2+]i decline during Ca2+ sparks in rat ventricular myocytes. J Physiol 496(Pt 2):575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lee HC, Aarhus R, Graeff R, Gurnack ME, Walseth TF (1994) Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370(6487):307–309

    Article  CAS  PubMed  Google Scholar 

  130. Lee HC, Aarhus R, Graeff RM (1995) Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J Biol Chem 270(16):9060–9066

    Article  CAS  PubMed  Google Scholar 

  131. Tanaka Y, Tashjian AH Jr (1995) Calmodulin is a selective mediator of Ca2+-induced Ca2+ release via the ryanodine receptor-like Ca2+ channel triggered by cyclic ADP-ribose. Proc Natl Acad Sci U S A 92(8):3244–3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Takasawa S, Ishida A, Nata K, Nakagawa K, Noguchi N, Tohgo A et al (1995) Requirement of calmodulin-dependent protein kinase II in cyclic ADP-ribose-mediated intracellular Ca2+ mobilization. J Biol Chem 270(51):30257–30259

    Article  CAS  PubMed  Google Scholar 

  133. Thomas JM, Summerhill RJ, Fruen BR, Churchill GC, Galione A (2002) Calmodulin dissociation mediates desensitization of the cADPR-induced Ca2+ release mechanism. Curr Biol: CB 12(23):2018–2022

    Article  CAS  PubMed  Google Scholar 

  134. Zhang X, Tallini YN, Chen Z, Gan L, Wei B, Doran R et al (2009) Dissociation of FKBP12.6 from ryanodine receptor type 2 is regulated by cyclic ADP-ribose but not beta-adrenergic stimulation in mouse cardiomyocytes. Cardiovasc Res 84(2):253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rakovic S, Cui Y, Iino S, Galione A, Ashamu GA, Potter BV et al (1999) An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J Biol Chem 274(25):17820–17827

    Article  CAS  PubMed  Google Scholar 

  136. Gul R, Shawl AI, Kim SH, Kim UH (2012) Cooperative interaction between reactive oxygen species and Ca2+ signals contributes to angiotensin II-induced hypertrophy in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 302(4):H901–H909

    Article  CAS  PubMed  Google Scholar 

  137. Bak J, Billington RA, Timar G, Dutton AC, Genazzani AA (2001) NAADP receptors are present and functional in the heart. Curr Biol: CB 11(12):987–990

    Article  CAS  PubMed  Google Scholar 

  138. Chini EN, Dousa TP (1995) Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate (NAADP), a Ca2+-releasing agonist, in rat tissues. Biochem Biophys Res Commun 209(1):167–174

    Article  CAS  PubMed  Google Scholar 

  139. Chini EN, Chini CC, Kato I, Takasawa S, Okamoto H (2002) CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues. Biochem J 362(Pt 1):125–130

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Vasudevan SR, Galione A, Churchill GC (2008) Sperm express a Ca2+−regulated NAADP synthase. Biochem J 411(1):63–70

    Article  CAS  PubMed  Google Scholar 

  141. Galfre E, Pitt SJ, Venturi E, Sitsapesan M, Zaccai NR, Tsaneva-Atanasova K et al (2012) FKBP12 activates the cardiac ryanodine receptor Ca2+−release channel and is antagonised by FKBP12.6. PLoS One 7(2):e31956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Macgregor A, Yamasaki M, Rakovic S, Sanders L, Parkesh R, Churchill GC et al (2007) NAADP controls cross-talk between distinct Ca2+ stores in the heart. J Biol Chem 282(20):15302–15311

    Article  CAS  PubMed  Google Scholar 

  143. Zhao YJ, Zhang HM, Lam CM, Hao Q, Lee HC (2011) Cytosolic CD38 protein forms intact disulfides and is active in elevating intracellular cyclic ADP-ribose. J Biol Chem 286(25):22170–22177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhao YJ, Lam CM, Lee HC (2012) The membrane-bound enzyme CD38 exists in two opposing orientations. Sci Signal 5(241):ra67

    Article  CAS  PubMed  Google Scholar 

  145. Zhao YJ, Zhu WJ, Wang XW, Zhang LH, Lee HC (2015) Determinants of the membrane orientation of a calcium signaling enzyme CD38. Biochim Biophys Acta 1853(9):2095–2103

    Article  CAS  PubMed  Google Scholar 

  146. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111(5):703–708

    Article  CAS  PubMed  Google Scholar 

  147. Repnik U, Cesen MH, Turk B (2013) The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol 5(1):a008755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H et al (2010) Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking. Curr Biol: CB 20(8):703–709

    Article  CAS  PubMed  Google Scholar 

  149. Ruas M, Davis LC, Chen CC, Morgan AJ, Chuang KT, Walseth TF et al (2015) Expression of Ca(2)(+)-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells. EMBO J 34(13):1743–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X et al (2012) TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151(2):372–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jentsch TJ, Hoegg-Beiler MB, Vogt J (2015) Departure gate of acidic Ca(2)(+) confirmed. EMBO J 34(13):1737–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Capel RA, Bolton EL, Lin WK, Aston D, Wang Y, Liu W et al (2015) Two-pore channels (TPC2s) and nicotinic acid adenine dinucleotide phosphate (NAADP) at Lysosomal-sarcoplasmic reticular junctions contribute to acute and chronic beta-adrenoceptor signaling in the heart. J Biol Chem 290(50):30087–30098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A et al (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5(4):220–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Davidson SM, Foote K, Kunuthur S, Gosain R, Tan N, Tyser R et al (2015) Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore. Cardiovasc Res 108(3):357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Djerada Z, Millart H (2013) Intracellular NAADP increase induced by extracellular NAADP via the P2Y11-like receptor. Biochem Biophys Res Commun 436(2):199–203

    Article  CAS  PubMed  Google Scholar 

  156. Djerada Z, Peyret H, Dukic S, Millart H (2013) Extracellular NAADP affords cardioprotection against ischemia and reperfusion injury and involves the P2Y11-like receptor. Biochem Biophys Res Commun 434(3):428–433

    Article  CAS  PubMed  Google Scholar 

  157. Cancela JM, Churchill GC, Galione A (1999) Coordination of agonist-induced Ca2+−signalling patterns by NAADP in pancreatic acinar cells. Nature 398(6722):74–76

    Article  CAS  PubMed  Google Scholar 

  158. Parkesh R, Lewis AM, Aley PK, Arredouani A, Rossi S, Tavares R et al (2008) Cell-permeant NAADP: a novel chemical tool enabling the study of Ca2+ signalling in intact cells. Cell Calcium 43(6):531–538

    Article  CAS  PubMed  Google Scholar 

  159. Nebel M, Schwoerer AP, Warszta D, Siebrands CC, Limbrock AC, Swarbrick JM et al (2013) Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling and arrhythmias in the heart evoked by beta-adrenergic stimulation. J Biol Chem 288(22):16017–16030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Warszta D, Nebel M, Fliegert R, Guse AH (2014) NAD derived second messengers: role in spontaneous diastolic Ca2+ transients in murine cardiac myocytes. DNA Repair 23:69–78

    Article  CAS  PubMed  Google Scholar 

  161. Collins TP, Bayliss R, Churchill GC, Galione A, Terrar DA (2011) NAADP influences excitation-contraction coupling by releasing calcium from lysosomes in atrial myocytes. Cell Calcium 50(5):449–458

    Article  CAS  PubMed  Google Scholar 

  162. Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM (2010) Calcium signaling via two-pore channels: local or global, that is the question. Am J Physiol Cell Physiol 298(3):C430–C441

    Article  CAS  PubMed  Google Scholar 

  163. Kinnear NP, Boittin FX, Thomas JM, Galione A, Evans AM (2004) Lysosome-sarcoplasmic reticulum junctions. A trigger zone for calcium signaling by nicotinic acid adenine dinucleotide phosphate and endothelin-1. J Biol Chem 279(52):54319–54326

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek A. Terrar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terrar, D.A. (2020). Calcium Signaling in the Heart. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_16

Download citation

Publish with us

Policies and ethics