Skip to main content

Plastics, Micro- and Nanomaterials, and Virus-Soil Microbe-Plant Interactions in the Environment

  • Chapter
  • First Online:
Plant Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Over the course of civilization humans have produced a spectrum of over 90 million substances and Nature has also designed certain substance; for example, nitrification inhibitors. It is well-known that the substances produced by humans leave some waste at target locations and this waste is spread in various environments, where, in soils, micro- and nanopollutants are adsorbed and degraded better than in aquatic systems.

Current global plastic production is 320 million tons (Mt) per year. A doubling in the next 20 years is expected and wastewater treatment plants (WWTPs) are seen as primary barriers against the spread of micro- and nanopollutants, particularly when they are equipped with activated carbon adsorption, advanced oxidation processes, nano-filtration, reverse osmosis, or membrane bioreactors. Administration, WWTP, and soil management sectors will have to improve not only plastic recycling but also to develop a micro- and nanotechnology steering strategy; various fields in science and industry are active in this technology with the aims of improving health and food quality and security and reducing plant diseases..

Various cost- and time-pressure aspects drive the emerging of miniaturization processes at a very rapid pace. Particularly important in diagnostic, medical, and food analysis applications are mechanical and electro-mechanical elements, embedded microfluidic devices, and fabricated micro-electro-mechanical systems (MEMS). Small chips can contain many of the required components of a typical room-sized laboratory, and MEMS challenge recycling and investigative specialists. In our Plastocene world, our concerned aims in regard to WWTPs and agriculture are to understand when microorganisms or plants experience positive, adverse, and inhibitory effects of nano-sized metals and their oxides, such as Ag, Cu, CuO, Cu-chitosan, Zn, ZnO, Fe, Mn, Al, Au, CeO2, TiO2, and SiO2; and how micro- and nanopollutant recycling can be solved.

Discussed in this chapter are the limitations and perceptions in organizing the Plastocene world, which is increasingly suffering from the spreading of micro- and nanoplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alavanja MCR (2009) Pesticides use and exposure extensive worldwide. Rev Environ Health 24:303–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alimi OS, Budarz JF, Hernandez LM, Tufenkji N (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52:1704–1724. https://doi.org/10.1021/acs.est.7b05559

    Article  CAS  PubMed  Google Scholar 

  • Andren O, Kätterer T (2008) Agriculture systems. In: Jørgensen SE, Fath BD (eds) Ecosystems. Vol. [1] of Encyclopedia of ecology, 5 vols. Elsevier, Oxford, pp 96–110

    Chapter  Google Scholar 

  • Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176. https://doi.org/10.1016/j.envint.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  • Baldwin AK, Corsi SR, Mason SA (2016) Plastic debris in 29 Great Lakes tributaries: relations to watershed attributes and hydrology. Environ Sci Technol 50:10377–10385

    Article  CAS  PubMed  Google Scholar 

  • Banning the use of microbeads in cosmetics and personal care products -GOV.UK. https://www.gov.uk/government/consultations/banning-the-use-of-microbeads-in-cosmetics-and-personal-careproducts. Accessed 23 Jan 2018

  • Barriault D, Sylvestre M (1993) Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms. Can J Microbiol 39:594–602

    Article  CAS  PubMed  Google Scholar 

  • Beer S, Garm A, Huwer B, Dierking J, Nielsen TG (2018) No increase in marine microplastic concentration over the last three decades-A case study from the Baltic Sea. Sci Total Environ 621:1272–1279. https://doi.org/10.1016/j.scitotenv.2017.10.101

    Article  CAS  PubMed  Google Scholar 

  • Beier SD, Shen D, Schott T, Jürgens K (2017) Metatranscriptomic data reveal the effect of different community properties on multifunctional redundancy. Mol Ecol 26:6813–6826. https://doi.org/10.1111/mec.14409. Epub 2017 Dec 2

    Article  CAS  PubMed  Google Scholar 

  • Benckiser G (1997) Organic inputs and soil metabolism. In: Benckiser G (ed) Fauna in soil ecosystems – recycling processes, nutrient fluxes, and agricultural production. Marcel Dekker, New York. pp 7–62 of total 400 pages

    Chapter  Google Scholar 

  • Benckiser G (2012) Nanotechnology and patents in agriculture, food technology nutrition and medicine- advantages and risks. Recent Patents Food Nutr Agri 4:171–175

    Article  Google Scholar 

  • Benckiser G (2017) Nanotechnology in life science: its application and risk. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology, an agricultural paradigm, eBook, Springer Nature Singapore. https://doi.org/10.1007/978-981-10-4573-8; Benckiser G. Eusocial ant nest management, template for land development? WSEAS Transactions on Environment and Development, ISSN/E-ISSN: 1790-5079/ 2224-3496, 13:204-215 Art. #23, pp. 204-2153:1790-5079

    Google Scholar 

  • Benckiser G, Ottow JCG (1982) Metabolism of the plasticizer di-n-butylphthalate by Pseudomonas pseudoalcaligenes under anaerobic conditions, with nitrate as the only electron acceptor. Appl Environ Microbiol 44:576–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benckiser G, Schnell S (2007) Biodiversity in agricultural production systems. Taylor and Francis, Boca Raton. books.google.com

    Google Scholar 

  • Benckiser G, Gaus G, Syring KM et al (1982) Denitrification losses from an Inceptisol field treated with mineral fertilizer or sewage sludge. J Plant Nutr Soil Sci 150:241–248

    Google Scholar 

  • Benckiser G, Schartel T, Weiske A (2015) Control of NO3 and N2O emissions in agroecosystems: a review. Agron Sustain Dev 35:1059–1074

    Article  CAS  Google Scholar 

  • Benckiser G, Ladha JK, Wiesler F (2016) Climate change and nitrogen turnover in soils and aquatic environments. In: Marxsen J e (ed) Climate change and microbial ecology: current research and future trends. Caister Academic Press, Norfolk., chapter 8, p 22

    Google Scholar 

  • Beutin L, Hammerl JA, Strauch K et al (2012) Spread of a distinct Stx2-encoding phage prototype among Escherichia coli O104:H4 strains from outbreaks in Germany, Norway, and Georgia. J Virol 19:10444–10455

    Article  CAS  Google Scholar 

  • Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449:827–834. https://doi.org/10.1038/nature06247

    Article  CAS  PubMed  Google Scholar 

  • Burton GA (2017) Stressor exposures determine risk: so, why do fellow scientists continue to focus on superficial microplastics risk? Environ Sci Technol 51:13515

    Article  CAS  PubMed  Google Scholar 

  • Cable RN, Beletsky D, Beletsky R, Wigginto K, Locke BW, Duhaime MB (2017) Distribution and modelled transport of plastic pollution in the Great Lakes, the world’s largest freshwater resource. Front Environ Sci. https://doi.org/10.3389/fenvs.2017.00045

  • Clokie MRJ, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Connors KA, Dyer SD, Belanger SE (2017) Advancing the quality of environmental microplastic research. Environ Toxicol Chem 36:1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JI, MacCallum FO (1984) Viruses and the environment. https://doi.org/10.1007/978-94-015-77014 https://link.springer.com/content/pdf/10.1007%2F978-94-015-7701-4.pdf

  • Croxatto Vega GC, ten Hoeve M, Birkved M et al (2014) Choosing co-substrates to supplement biogas production from animal slurry- a life cycle assessment of the environmental consequences. Bioresour Technol 171:410–420

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Muñoz ME, Fuentes-Pananá EM (2018) Beta and Gamma human herpes viruses: agonistic and antagonistic interactions with the host immune system. Front Microbiol 8:2521

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Costa JP, Santos PSM, Duarte AC, Rocha-Santos T (2016) (Nano) plastics in the environment-sources, fates and effects. Sci Total Environ 566–567:15–26

    Article  PubMed  CAS  Google Scholar 

  • DeBruyn J (2016) The dead and their microbes. Microbe 11:119–124

    Google Scholar 

  • Di Giallonardo F, Holmes EC (2015) Viral biocontrol: grand experiments in disease emergence and evolution. Trends Microbiol 23:83–90. https://doi.org/10.1016/.tim.2014.10.004

    Article  PubMed  Google Scholar 

  • Donovan C, Heyer A, Pfeifer E, Polen T et al (2015) A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. Nucleic Acids Res 26:5002–5016

    Article  CAS  Google Scholar 

  • Duhana JS, Kumara R, Kumara N et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23. https://doi.org/10.1016/j.btre.2017.03.002

    Article  Google Scholar 

  • ECDC (2018) European Centre for Disease Prevention and Control. Influenza virus characterisation, Summary Europe https://ecdc.europa.eu/en/publications-data/influenza-virus-characterisation-summary-europe-february-2018

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Article  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015

  • Grobe A, Rissanen M (2012) Nanotechnologies in agriculture and food – an overview of different fields of application, risk assessment and public perceptions. Recent Patents Food Nutr Agri 4:176–186

    Article  Google Scholar 

  • Hansen SF, Maynard A, Baun A, Tickner JA (2008) Late lessons from early warnings for nanotechnology. Nat Nanotechnol 3:444–447

    Article  CAS  Google Scholar 

  • Horstkotte E, Odoerfer KI (2012) Towards improved therapies using nanopharmaceuticals: recent patents on pharmaceutical nanoformulations. Recent Patents Food Nutr Agri 4:220–245

    Article  CAS  Google Scholar 

  • Hussain S, Siddique T, Saleem M et al (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agro 102:159–200

    Article  CAS  Google Scholar 

  • Hyman P, Abedon ST (eds) (2018) Viruses of microorganisms. Caister Academic, Norfolk. https://doi.org/10.21775/9781910190852

    Book  Google Scholar 

  • Kandeler E, Dick RP (2007) Soil enzymes. Spatial distribution and function in agroecosystems. In: Benckiser G, Schnell S (eds) Biodiversity in agricultural production systems. Taylor & Francis, Boca Raton, pp 263–285

    Google Scholar 

  • Käppler A, Fischer D, Oberbeckmann S et al (2016) Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem 408:8377–8391

    Article  PubMed  CAS  Google Scholar 

  • Kesy K, Oberbeckmann S, Müller F, Labrenz M (2016) Polystyrene influences bacterial assemblages in Arenicola marina-populated aquatic environments in vitro. Environ Pollut 219:219–227

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Ziegler GR (2012) Patents on fibre spinning from starches. Recent Patents Food Nutr Agric 4:2010–2019

    Google Scholar 

  • Kubowicz S, Booth AM (2017) Biodegradability of plastics: challenges and misconceptions. Environ Sci Technol 51:12058–12060

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmeier D, Sandetskaya N, Allelein S (2012) Application of nanotechnology in miniaturized systems and its use in medical and food analysis. Recent Patents Food Nutr Agric 4:187–199

    Article  CAS  Google Scholar 

  • Leithold G, Hülsbergen K-J, Brock C (2015) Organic matter returns to soils must be higher under organic compared to conventional farming. J Plant Nutr Soil Sci 178:4–12

    Article  CAS  Google Scholar 

  • Lemke PA, Nash CH (1974) Fungal viruses. Bacteriol Rev 38:29–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz R, Enders K, Nielsen TG (2016) Microplastic exposure studies should be environmentally realistic. Proc Natl Acad Sci U S A 113:E4121–E4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Farrell J (2000) Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ Sci Technol 34:173–179

    Article  CAS  Google Scholar 

  • Liu J, Zeng X, Yue D (2013) Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles. J Environ Sci (China) 25:473–478

    Article  CAS  Google Scholar 

  • Lozano R, Naghavi M, Foreman K et al (2010) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128

    Article  Google Scholar 

  • Luo Y, Guo W, Ngo HH, Nghiem LD et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-H, Yu Y-P, Jost G, Liu W-H, Huang X-L, Gu L (2016) Characterization of two bacteriophages for specific treatment of biofilm formed by a Vibrio sp. isolated from an abalone farm. Aquac Res 47:3964–3972

    Article  CAS  Google Scholar 

  • Mannan FMA, Allan N, Zakaria Z, Mahat NA, Wahab RA (2018) Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate. J Biotech. https://doi.org/10.1016/j.biotec.2018.05.015

  • Mba CC (1997) Rock phosphate solubilizing Streptosporangium isolates from casts of tropical earthworms. Soil Biol Biochem 29:381–385

    Article  CAS  Google Scholar 

  • McCarty GW, Bremner JM (1986) Inhibition of nitrification in soil by acetylenic compounds. Soil Sci Soc Am J 50:1198–1202

    Article  CAS  Google Scholar 

  • McCullers JA (2014) The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol 12:252–262. https://doi.org/10.1038/nrmicro3231

    Article  CAS  PubMed  Google Scholar 

  • Mergelsberg M, Egle V, Boll M (2018) Evolution of a xenobiotic degradation pathway: formation and capture of the labile phthaloyl-CoA intermediate during anaerobic phthalate degradation: anaerobic phthalate degradation. Mol Microbiol https://doi.org/10.1111/mmi.13962

    Article  CAS  PubMed  Google Scholar 

  • Michaelian K (2017) Microscopic dissipative structuring and proliferation at the origin of life. Heliyon 3:e00424. https://doi.org/10.1016/j.heliyon.2017.e00424

    Article  PubMed  PubMed Central  Google Scholar 

  • Modrow S, Falke D, Truyen U, Schatzl H (2013) Molecular virology. Springer-Verlag Berlin and Heidelberg Gmbh & Colorado. KG, Berlin. ISBN 9783642207174

    Book  Google Scholar 

  • Mougin C (2002) Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycyc Arom Comp 22:1011–1043

    Article  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment – activity, ecology and applications. Marcel Dekker, New York, pp 1–34

    Google Scholar 

  • Nelson KA (2018) Pronitridine nitrification inhibitor with urea ammonium nitrate for corn. J Agric Sci 10:16–27

    Google Scholar 

  • Ni T, Zeng Q (2016) Duel infection of cyanobacteria by cyanophages. Front Mar Sci 2:123

    Article  Google Scholar 

  • Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils dumps for microplastics of urban origin? Environ Sci Technol 50:10777–10779

    Article  CAS  PubMed  Google Scholar 

  • Nomura DH, Mateus SF, Saiki M, Bode P (2000) Characterization of inorganic components in plastic materials. J Radioanal Nuc Chem 244:61–65

    Article  CAS  Google Scholar 

  • Ogada PA, Kiirika LM, Haase C et al (2017) Differential proteomics analysis of Frankliniella occidentalis immune response after infection with Tomato spotted wilt virus (Tospovirus). Dev Com Immun 67:1–7

    Article  CAS  Google Scholar 

  • Pageni BB, Lupwayi NZ, Larney FJ, Kawchuk LM, Gan Y (2013) Populations, diversity and identities of bacterial endophytes in potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci 93:1125–1142

    Article  CAS  Google Scholar 

  • Pan D, Nolan J, Williams KH, Weber KA (2017) Abundance and distribution of microbial cells and viruses in an alluvial aquifer. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01199

  • Peduzzi P (2016) Aquatic viruses and global climate change. In: Marxsen J (ed) Climate change and microbial ecology-current research and future trends. Caister Academic Press, Norfolk, pp 137–145

    Google Scholar 

  • PICCMAT (2011) Common agricultural policy towards 2020 ec.europa.eu/smart-regulation/impact/ ia_carried...2011/SEC(2011) 1153 final du 12 octobre 2011

  • Piewbang C, Rungsipipat A, Poovorawan Y, Techangamsuwan S (2016) Development and application of multiplex PCR assays for detection of virus-induced respiratory disease complex in dogs. J Vet Med Sci 78:1847–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard PC (2007) How viruses control microbial ecosystems. Microbiol Aust 28:115–117

    Google Scholar 

  • Quiquampoix H, Servagent-Noinville S, Baron MH (2002) Enzyme adsorption on soil mineral surfaces and consequences for catalytic activity. In: Burns RG, Dick RP (eds) Enzymes in the environment- activity, ecology and applications. Marcel Dekker, New York, pp 285–306

    Google Scholar 

  • Rahlff J, Stolle C, Wurl O (2017) SISI: a new device for in situ incubations at the ocean surface. J Mar Sci Eng. https://doi.org/10.3390/jmse5040046

    Article  Google Scholar 

  • Rajbanshi SS, Benckiser G, Ottow JCG (1992) Effects of concentration, incubation temperature, and repeated applications on degradation kinetics of dicyandiamide (DCD) in model experiments with a silt soil. Biol Fertil Soils 13:61–64

    Article  CAS  Google Scholar 

  • Rakonjac J, Conway JF (2013) Bacteriophages: self-assembly and application. In: Rehm BHA (ed) Bionanotechnology: biological self-assembly and its applications. Caister Academic Press, Norfolk, pp 110–127

    Google Scholar 

  • Reavy B, Swanson MM, Taliansky M (2014) Viruses in soil. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth, biodiversity, community and ecosystems. Springer Science+Business Media, Dordrecht

    Google Scholar 

  • Renault JP, Verchère-Béaur C, Morgenstern-Badarau I, Yamakura F, Gerloch M (2000) EPR and ligand field studies of iron superoxide dismutases and iron-substituted manganese superoxide dismutases: relationships between electronic structure of the active site and activity. Inorg Chem 39:2666–2675. https://doi.org/10.1021/ic0000451

    Article  CAS  PubMed  Google Scholar 

  • Reznik A, Feinerman E, Finkelshtain I et al (2017) Economic implications of agricultural reuse of treated wastewater in Israel: a statewide long-term perspective. Ecol Econ 135:222–233

    Article  Google Scholar 

  • Ribas-Ribas M, Mustaffa NIH, Rahlff J, Stolle C, Wurl O (2017) Sea surface scanner (S3): a catamaran for high-resolution measurements of biogeochemical properties of the sea surface microlayer. J Atmos Ocean Tech. https://doi.org/10.1175/JTECH-D-17-0017.1

    Article  Google Scholar 

  • Richter KN, Rizzoli S, Jähne S, Vogts A, Lovric J (2017) Review of combined isotopic and optical nanoscopy. Neurophot 4:020901

    Article  Google Scholar 

  • Rocha-Santos TAP (2018) Editorial overview: micro and nano-plastics. Curr Opin Environ Scie Health 1:52–54. https://doi.org/10.1016/j.coesh.2018.01.003

    Article  Google Scholar 

  • Rosenberg K, Bertaux J, Krome K, Hartmann A et al (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J 3:675–684

    Article  CAS  PubMed  Google Scholar 

  • Sahin F, Cakmakci R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  CAS  Google Scholar 

  • Sahrawat KL (1989) Effects of nitrification inhibitors on nitrogen transformations, other than nitrification, in soil. Adv Agron 42:279–309

    Article  CAS  Google Scholar 

  • Sanderman J, Creamer C, Baisden et al (2017) Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity. Soil 3:1–16

    Article  CAS  Google Scholar 

  • Sawers RG (2018) O-Phthalate derived from plastics’ plasticizers and a bacterium’s solution to its anaerobic degradation. Micro Com Mol Microbiol. https://doi.org/10.1111/mmi.13975

    Article  CAS  PubMed  Google Scholar 

  • Schiemann J, Paape M, Kellmann JW (2007) Erreger auf Wanderschaft: Transportproteine verraten pflanzenpathogenen Viren den Weg von Zelle zu Zelle. Bioforum 30:22–25

    CAS  Google Scholar 

  • Schmid M, Speiseder T, Dobner T, Gonzalez RA (2014) Virus-cell interactions DNA virus replication compartments. J Int Virol 88:1404–1420

    Article  CAS  Google Scholar 

  • Scholthof KBG, Adkins S, Czosnek H et al (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz S, Kölbl A, Ebli M, Buegger F et al (2017) Field-scale pattern of denitrifying microorganisms and N2O emission rates indicate a high potential for complete denitrification in an agriculturally used organic soil. Microb Ecol 74:765–770

    Article  CAS  PubMed  Google Scholar 

  • Senior K, Müller S, Schacht VJ, Bunge M (2012) Antimicrobial precious-metal nanoparticles and their use in novel materials. Recent Patents Food Nutr Agri 4:200–209

    Article  CAS  Google Scholar 

  • Senjen R (2012) Nanotechnology and patents- how can potential risks be assessed. Recent Patents Food Nutr Agri 4:245–249

    Article  Google Scholar 

  • Sime-Ngando T (2014) Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00355

  • Singh SN (ed) (2016) Microbe induced degradation of pesticides. Environ Sci Engineer ISBN 978-3-319-45155-8. Springer, Cham. https://doi.org/10.1007/978-3-319-45156-5

    Book  Google Scholar 

  • Srinivasiah S, Bhavsar J, Thapar K, Liles et al (2008) Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol 159:349–357

    Article  CAS  PubMed  Google Scholar 

  • Srinivasiah S, Lovett J, Polson S, Bhavsar J et al (2013) Direct assessment of viral diversity in soils by random PCR amplification of polymorphic DNA. Appl Environ Microbiol 79:5450–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbarao GT, Yoshihashi T, Worthington M et al (2015) Suppression of soil nitrification by plants. Plant Sci 233:155–164. https://doi.org/10.1016/j.plantsci.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  • Tagg AS, Labrenz M (2018) Closing microplastic pathways before they open: a model approach. Environ Sci Technol 52:3340–3341. https://doi.org/10.1021/acs.est.8b00961

    Article  CAS  PubMed  Google Scholar 

  • Tang BL (2017) Commentary: tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Front Environ Sci 5:63. https://doi.org/10.3389/fenvs.2017.00063

    Article  Google Scholar 

  • Tetzlaff B, Friedrich K, Vorderbrügge T et al (2013) Distributed modelling of mean annual soil erosion and sediment delivery rates to surface waters. Catena 102:13–20

    Article  Google Scholar 

  • Thashiro M, Cibrowski P, Reinacher M et al (1987) Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology 157:421–430

    Article  Google Scholar 

  • Thom E, Ottow JCG, Benckiser G (1997) The fungicide difenoconazole in a silt loam soil as affected by pretreatment and organic amendment. Environ Pollut 96:409–414

    Article  CAS  PubMed  Google Scholar 

  • Tiedje JM, Quensen IIIJF, Chee-Sanford J et al (1993) Microbial reductive dechlorination of PCBs. Biodegradation 4:231–240

    Article  CAS  PubMed  Google Scholar 

  • Tindaon F, Benckiser G (2018) Evaluation of the side effects of nitrification inhibiting agrochemicals in soils. Soil Environ (accepted for publication)

    Google Scholar 

  • Tindaon F, Benckiser G, Ottow JCG (2012) Evaluation of ecological doses of the nitrification inhibitors 3,4-dimethylpyrazole phosphate (DMPP) and 4-chloromethylpyrazole (ClMP) in comparison to dicyandiamide (DCD) in their effects on dehydrogenase and dimethyl sulfoxide reductase activity in soils. Biol Fertil Soils 48: https://doi.org/10.1007/s00374-011-0655-0

    Article  CAS  Google Scholar 

  • Tuckwell HC, Shipman PD, Perelson AS (2008) The probability of HIV infection in a new host and its reduction with microbicides. Math Biosci 214:81–86

    Article  PubMed  Google Scholar 

  • US Environmental Protection Agency (USEPA) (2016) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2014. https://www.epa.gov/sites/production/files/2016-04/documents/us-ghg-inventory-2016-main-text.pdf. Accessed 27 Sept 2016

  • Van Driesche RG, Carruthers RI, Center T (2010) Classical biological control for the protection of natural ecosystems. Biol Control 54:2–33. https://doi.org/10.1016/j.biocontrol.2010.03.003.

    Article  Google Scholar 

  • Vandermeersch G, VanCauwenberghe L, Janssen C et al (2015) A critical view on microplastic quantification in aquatic organisms. Environ Res 143:46–55. https://doi.org/10.1016/j.envres.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  • Vazquez S, Nogales B, Ruberto L, Hernandez E et al (2009) Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microb Ecol 57:598–610

    Article  CAS  PubMed  Google Scholar 

  • Vestergaard G, Schulz S, Schöler A, Schloter M (2017) Making big data smart-how to use metagenomics to understand soil quality. Biol Fertil Soils 53:479–484

    Article  Google Scholar 

  • Vogel TM, Simonet P, Jansson JK, Hirsch PR et al (2009) TerraGenome: a consortium for the sequencing of a soil metagenome. Nat Rev Microbiol 7:252

    Article  CAS  Google Scholar 

  • Vos M, Birkett PJ, Birch E et al (2009) Local adaptation of bacteriophages to their bacterial hosts in soil. Science 325:833

    Article  CAS  PubMed  Google Scholar 

  • Wang M-J, Jones KC (1994) Behaviour and fate of chlorobenzenes (CBs) introduced into soil-plant systems by sewage sludge application: a review. Chemosphere 28:1325–1360. https://doi.org/10.1016/0045-6535(94)90077-9

    Article  CAS  Google Scholar 

  • Ward MH, Nuckols JR, Weigel SJ, Maxwell SK (2000) Identifying populations potentially exposed to agricultural pesticides using remote sensing and a geographic information system. Environ Health Perspect 108:5–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasik BR, Turner PE (2013) On the biological success of viruses. Ann Rev Microbiol 67:519–541

    Article  CAS  Google Scholar 

  • Weiske A, Benckiser G, Herbert T, Ottow· JCG (2001) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils 34:109–117

    Article  CAS  Google Scholar 

  • Weltje L, Sumpter JP (2017) What makes a concentration environmentally relevant? Critique and a proposal. Environ Sci Technol 51:11520–11521

    Article  CAS  PubMed  Google Scholar 

  • Whitaker BK, Rua MA, Mitchell CE (2015) Viral pathogen production in a wild grass host driven by host growth and soil nitrogen. New Phytol 207:760–768

    Article  CAS  PubMed  Google Scholar 

  • WHO (2014) Ebola virus disease in West Africa – the first 9 months of the epidemic and forward projections. New Engl J Med 371:1481–1495

    Article  CAS  Google Scholar 

  • Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Ann Rev Virol 4:201–219

    Article  CAS  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan DZ, Mao LQ, Li CZ, Liu J (2015) Biodegradation of hexachlorobenzene by a constructed microbial consortium. World J Microbiol Biotechnol 31:371–377

    Article  CAS  PubMed  Google Scholar 

  • Young RF, White RL (2008) Lysis of the host by bacteriophage. In: Mahy BJW, van Regenmortel MHV (eds) Encyclopedia of virology. Elsevier, Oxford, pp 144–158

    Google Scholar 

  • Zerulla W, Barth T, Dressel J et al (2001) DMPP- a new nitrification inhibitor for agriculture and horticulture: an introduction. Biol Fertil Soils 34:79–84

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gero Benckiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benckiser, G. (2019). Plastics, Micro- and Nanomaterials, and Virus-Soil Microbe-Plant Interactions in the Environment. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-12496-0_4

Download citation

Publish with us

Policies and ethics