Skip to main content

Waste Generation Prediction in Smart Cities Through Deep Neuroevolution

  • Conference paper
  • First Online:
Smart Cities (ICSC-CITIES 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 978))

Included in the following conference series:

Abstract

Managing the waste collection service is a challenge in the fast-growing city context. A key to success in planning the collection is having an accurate prediction of the filling level of the waste containers. In this study we present a solution to the waste generation prediction problem based on recurrent neural networks. Particularly, we introduce a deep neuroevolutionary technique to automatically design a deep network that encapsulates the behavior of all the waste containers in a city. We analyze a real world case study consisting of one year of filling level values of 217 containers located in a city in the south of Spain and compare our results to the state-of-the-art. The results show that the predictions of our approach exceeds all its competitors and that its accuracy is a key enabler for an appropriate waste collection planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://keras.io/.

References

  1. Bakici, T., Almirall, E., Wareham, J.: A smart city initiative: the case of Barcelona. J. Knowl. Econ. 4(2), 135–148 (2013)

    Google Scholar 

  2. Ghisellini, P., Cialani, C., Ulgiati, S.: A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Cleaner Prod. 114, 11–32 (2016)

    Google Scholar 

  3. Tukker, A.: Product services for a resource-efficient and circular economy - a review. J. Cleaner Prod. 97, 76–91 (2015)

    Google Scholar 

  4. Teixeira, J., Antunes, A.P., de Sousa, J.P.: Recyclable waste collection planning-a case study. Eur. J. Oper. Res. 158(3), 543–554 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Ojha, V.K., Abraham, A., Snášel, V.: Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017)

    Google Scholar 

  6. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  7. Ferrer, J., García-Nieto, J., Alba, E., Chicano, F.: Intelligent testing of traffic light programs: validation in smart mobility scenarios. Math. Prob. Eng. 2016, 1–19 (2016)

    Google Scholar 

  8. Garcia-Nieto, J., Ferrer, J., Alba, E.: Optimising traffic lights with metaheuristics: reduction of car emissions and consumption. In: International Joint Conference on Neural Networks, pp. 48–54 (2014)

    Google Scholar 

  9. Massobrio, R., Toutouh, J., Nesmachnow, S., Alba, E.: Infrastructure deployment in vehicular communication networks using a parallel multiobjective evolutionary algorithm. Int. J. Intell. Syst. 32(8), 801–829 (2017)

    Google Scholar 

  10. Nesmachnow, S., Rossit, D., Toutouth, J.: Comparison of multiobjective evolutionary algorithms for prioritized urban waste collection in Montevideo, Uruguay. Electron. Notes Discrete Math. 69, 93–100 (2018)

    Google Scholar 

  11. Toutouh, J., Rossit, D., Nesmachnow, S.: Computational intelligence for locating garbage accumulation points in urban scenarios. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 411–426. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05348-2_34

    Google Scholar 

  12. Camero, A., Toutouh, J., Stolfi, D.H., Alba, E.: Evolutionary deep learning for car park occupancy prediction in smart cities. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 386–401. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05348-2_32

    Google Scholar 

  13. Ferrer, J., Alba, E.: BIN-CT: urban waste collection based in predicting the container fill level, Jully 2018

    Google Scholar 

  14. Garvin, B.J., Cohen, M., Dwyer, M.B.: Evaluating improvements to a meta-heuristic search for constrained interaction testing. Empirical Softw. Eng. 16(1), 61–102 (2011)

    Google Scholar 

  15. Sahoo, S., Kim, S., Kim, B.I., Kraas, B., Popov Jr., A.: Routing optimization for waste management. Interfaces 35(1), 24–36 (2005)

    Google Scholar 

  16. Dat, L.Q., Truc Linh, D.T., Chou, S.Y., Yu, V.F.: Optimizing reverse logistic costs for recycling end-of-life electrical and electronic products. Expert Syst. Appl. 39(7), 6380–6387 (2012)

    Google Scholar 

  17. Alagöz, A.Z., Kocasoy, G.: Improvement and modification of the routing system for the health-care waste collection and transportation in İstanbul. Waste Manage. 28(8), 1461–1471 (2008)

    Google Scholar 

  18. Beliën, J., De Boeck, L., Van Ackere, J.: Municipal solid waste collection and management problems: a literature review. Transp. Sci. 48(1), 78–102 (2014)

    Google Scholar 

  19. Xu, L., Gao, P., Cui, S., Liu, C.: A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China. Waste Manage. (New York, N.Y.) 33(6), 1324–1331 (2013)

    Google Scholar 

  20. Cole, C., Quddus, M., Wheatley, A., Osmani, M., Kay, K.: The impact of Local Authorities’ interventions on household waste collection: a case study approach using time series modelling. Waste Manag. (New York, N.Y.) 34(2), 266–272 (2014)

    Google Scholar 

  21. Tung, D.V., Pinnoi, A.: Vehicle routing-scheduling for waste collection in Hanoi. Eur. J. Oper. Res. 125(3), 449–468 (2000)

    MATH  Google Scholar 

  22. Sniezek, J., Bodin, L.: Using mixed integer programming for solving the capacitated arc routing problem with vehicle/site dependencies with an application to the routing of residential sanitation collection vehicles. Ann. Oper. Res. 144(1), 33–58 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Bodin, L., Mingozzi, A., Baldacci, R., Ball, M.: The rollon-rolloff vehicle routing problem. Transp. Sci. 34(3), 271–288 (2000)

    MATH  Google Scholar 

  24. Ferrer, J., Alba, E.: BIN-CT: sistema inteligente para la gestión de la recogida de residuos urbanos. In: International Greencities Congress, pp. 117–128 (2018)

    Google Scholar 

  25. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Google Scholar 

  26. Haykin, S.: Neural networks and learning machines. Volume 3. Pearson (2009)

    Google Scholar 

  27. Rumelhart, D., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. Technical report No. ICS-8506, California Univ San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  28. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach, vol. 5. GMD (2002)

    Google Scholar 

  29. Reed, R., Marks, R., Oh, S.: Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter. IEEE Trans. Neural Networks 6(3), 529–538 (1995)

    Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: International Conference on Machine Learning, pp. 115–123 (2013)

    Google Scholar 

  32. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent network architectures. In: International Conference on Machine Learning, pp. 2342–2350 (2015)

    Google Scholar 

  33. Alba, E., Martí, R.: Metaheuristic Procedures for Training Neural Networks, vol. 35. Springer Science & Business Media, Berlin (2006)

    MATH  Google Scholar 

  34. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Google Scholar 

  35. Miikkulainen, R., et al.: Evolving deep neural networks. arXiv preprint arXiv:1703.00548 (2017)

  36. Morse, G., Stanley, K.O.: Simple evolutionary optimization can rival stochastic gradient descent in neural networks. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016, pp. 477–484. ACM (2016)

    Google Scholar 

  37. Su, X., Yan, X., Tsai, C.L.: Linear regression. Wiley Interdisc. Rev. Comput. Stat. 4(3), 275–294 (2012)

    Google Scholar 

  38. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  39. Doerr, C.: Non-static parameter choices in evolutionary computation. In: Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, 15–19 July 2017, Companion Material Proceedings, ACM (2017)

    Google Scholar 

  40. Camero, A., Toutouh, J., Alba, E.: DLOPT: deep learning optimization library. arXiv preprint arXiv:1807.03523, July 2018

  41. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI 2016, pp. 265–283 (2016)

    Google Scholar 

  42. Camero, A., Toutouh, J., Alba, E.: Comparing deep recurrent networks based on the MAE random sampling, a first approach. In: Herrera, F., Damas, S., Montes, R., Alonso, S., Cordón, Ó., González, A., Troncoso, A. (eds.) CAEPIA 2018. LNCS (LNAI), vol. 11160, pp. 24–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00374-6_3

    Google Scholar 

  43. Camero, A., Toutouh, J., Alba, E.: Low-cost recurrent neural network expected performance evaluation. arXiv preprint arXiv:1805.07159, May 2018

Download references

Acknowledgements

This research was partially funded by Ministerio de Economía, Industria y Competitividad, Gobierno de España, and European Regional Development Fund grant numbers TIN2016-81766-REDT (http://cirti.es), and TIN2017-88213-R (http://6city.lcc.uma.es), and by Universidad de Málaga, Campus Internacional de Excelencia Andalucía TECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Toutouh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camero, A., Toutouh, J., Ferrer, J., Alba, E. (2019). Waste Generation Prediction in Smart Cities Through Deep Neuroevolution. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2018. Communications in Computer and Information Science, vol 978. Springer, Cham. https://doi.org/10.1007/978-3-030-12804-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12804-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12803-6

  • Online ISBN: 978-3-030-12804-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics