Skip to main content

Role of Nanotechnology Applications in Plant-Parasitic Nematode Control

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

It has been estimated by the International Meloidogyne Project that nematodes cause annual losses of 78 billion US dollars in developed countries and more than 100 billion in developing countries. Plant-parasitic nematodes are very small organisms that cannot be seen by the naked eye and are considered to be microscopic creatures. The gravity of these nematodes is epitomized by the infestation of plant roots that causes a wide range of symptoms including stunting, wilting, yellowing, reduction of flowering, fruit set, and fruit development, dieback, and sometimes even plant death. Control of these nematodes is very difficult because once the plant-parasitic nematodes are established in the soil, soil sterilization may be required. Conventional controls were not sufficient to suppress this pest, so new trends in pest control must be found. Nanotechnology is one of the solutions to overcome these pests by using modern pesticide formulations such as nano-capsules, nanoparticles, and nano-suspension pesticides against plant-parasitic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbassy MA, Abdel-Rasoul MA, Nassar AMK, Soliman BSM (2017) Nematicidal activity of silver nanoparticles of botanical products against rootknot nematode, Meloidogyne incognita. Arch Phytopathol Plant Prot 50(17–18):909–926

    Article  CAS  Google Scholar 

  • Abdellatif KF, Hamouda RA, El-Ansary MSM (2016) Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran J Biotechnol 14(4):250–259

    Article  Google Scholar 

  • Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  CAS  Google Scholar 

  • Ardakani AS (2013) Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita and growth parameters of tomato. Nematology 15(6):671–677

    Article  CAS  Google Scholar 

  • Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, Chen X (2007) One-pot synthesis of polyacrylamide-gold nanocomposite. Mater Chem Phys 106:412–415

    Article  CAS  Google Scholar 

  • Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res Int 25:12329–12341

    Article  CAS  Google Scholar 

  • Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl Mater Interfaces 7(18):9546–9553

    Article  CAS  Google Scholar 

  • Chariou PL, Steinmetz NF (2017) Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11(5):4719–4730

    Article  CAS  Google Scholar 

  • Cheng C, Qin J, Wu C, Lei M, Wang Y, Zhang L (2018) Suppressing a plant-parasitic nematode with fungivorous behavior by fungal transformation of a Bt cry gene. Microb Cell Fact 17(116):1–14

    Google Scholar 

  • Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture – Agricultural Research Service. Pest Manag Sci 59:748–753

    Article  CAS  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolgaev SI, Simakin AV, Voronov VV, Shafeev GA, Bozon-Verduraz F (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186:546–551

    Article  CAS  Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A 369(1–3):27–33

    Article  CAS  Google Scholar 

  • Fisher MH, Mrozik H (1989) Chemistry In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin-Heidelberg, New York, pp 1–23

    Google Scholar 

  • Fu Z, Chen K, Li L, Zhao F, Wang Y, Wang M, Shen Y, Cui H, Liu D, Guo X (2018) Spherical and spindle-like abamectin-loaded nano particles by flash nanoprecipitation for southern root-knot nematode control: Preparation and characterization. Nanomaterials (Basel) 8(449):1–12

    Google Scholar 

  • Guenther RH, Lommel SA, Opperman CH, Sit TL (2018) Plant virus-based nanoparticles for the delivery of agronomic compounds as a suspension concentrate. In: Wege C, Lomonossoff G (eds) Virus-derived nanoparticles for advanced technologies. Methods in molecular biology, vol 1776. Humana Press, New York

    Google Scholar 

  • Hardman R (2006) Toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  • Hesling JJ, Wallace HR (1961) Observations on the biology of chrysanthemum eelworm Aphelenchoides ritzema-bosi (Schwartz) Steiner in florists chrysanthemum. Ann Appl Biol 49:195–209

    Article  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jawaad RS, Sultan KF, Al- Hamadani AH (2014) Synthesis of silver nanoparticles. ARPN J Eng Appl Sci 9(4):586–592

    CAS  Google Scholar 

  • Jung J, Oh H, Noh H, Ji J, Kim S (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37:1662–1670

    Article  CAS  Google Scholar 

  • Kalaiselvi D, Sundararaj P, Premasudha P, Hafez SL (2017) Nematicidal activity of green synthesized silver nanoparticles using plant extracts against root-knot nematode meloidogyne incognita. Int J Nematol 22(1 and 2):81–94

    Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413

    Article  CAS  Google Scholar 

  • Kawasaki M, Nishimura N (2006) 1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles. Appl Surf Sci 253:2208–2216

    Article  CAS  Google Scholar 

  • Lambert K, Bekal S (2002) Introduction to plant-parasitic nematodes. Plant Health Instr. https://doi.org/10.1094/PHI-I-2002-1218-01

  • Lim D, Roh JY, Eom HJ, Hyun JW, Choi J (2012) Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  CAS  Google Scholar 

  • Memon AR, Schroder P (2008) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  Google Scholar 

  • Merga G, Wilson R, Lynn G, Milosavljevic B, Meisel D (2007) Redox catalysis on “naked” silver nanoparticles. J Phys Chem C 111:12220–12206

    Article  CAS  Google Scholar 

  • Myczko A (2006) The application of nanotechnology to the agricultural practice. Inz Rol 10:45–50

    Google Scholar 

  • Nair PMG, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101(3):550–560

    Article  CAS  Google Scholar 

  • Nakamura M, Tahara Y, Fukata S, Zhang M, Yang M, Iijima S, Yudasaka M (2017) Significance of optimization of phospholipid poly(Ethylene glycol) quantity for coating carbon nanohorns to achieve low cytotoxicity. Bull Chem Soc Jpn 90:662–666

    Article  CAS  Google Scholar 

  • Narkhede CP, Suryawanshi RK, Patil CD, Borase HP, Patil SV (2016) Use of protease inhibitor gold nanoparticles as a compatibility enhancer for Bt and deltamethrin: a novel approach for pest control. Biocatal Agric Biotechnol 8:8–12

    Article  Google Scholar 

  • Nassar AMK (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5:14–19

    Article  Google Scholar 

  • Noling JW, Becker JO (1994) The challenge of research and extension to define and implement alternatives to methyl bromide. J Nematol 26:573–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nour El-Deen AH, El-Deeb BA (2018) Effectiveness of silver nanoparticles against root-knot nematode, Meloidogyne incognita infecting tomato under greenhouse conditions. J Agric Sci 10(2):148–156

    Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong CW, NurYasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70

    Article  CAS  Google Scholar 

  • Sandhu SS, Shukla H, Shukla S (2017) Biosynthesis of silver nanoparticles by endophytic fungi: its mechanism, characterization techniques and antimicrobial potential. Afr J Biotechnol 16:683–698

    Article  CAS  Google Scholar 

  • Shoaib A, Elabasy A, Waqas M, Lin L, Cheng X, Zhang Q, Shi ZH (2018) Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem 100(1):80–91

    Article  CAS  Google Scholar 

  • Sondi I, Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Song HY, Ko KK, Oh LH, Lee BT (2006) Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cell Mater 11(Suppl 1):58

    Google Scholar 

  • Sorribas FJ, Ornat C, Verdejo-Lucas S, Galeano M, Valero J (2005) Effectiveness and profitability of the Mi-resistant tomatoes to control root-knot nematodes. Eur J Plant Pathol 111:29–38

    Article  Google Scholar 

  • Southey JF (1972) Anguinatritici. Commonwealth institute of helminthology descriptions of plant parasitic nematodes, Set 1, No. 13, St. Albans, Cab International Wallingford, UK, pp 1–4

    Google Scholar 

  • Tao A, Sinsermsuksakul P, Yang P (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 45:4597–4601

    Article  CAS  Google Scholar 

  • Thakur RK, Shirkot P (2017) Potential of biogold nanoparticles to control plant pathogenic nematodes. J Bioanal Biomed 9:220–222

    CAS  Google Scholar 

  • Tien D-C, Tseng K-H, Liao C-Y, Huang J-C, Tsung TT (2008) Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J Alloys Compd 463:408–411

    Article  CAS  Google Scholar 

  • Troupis A, Hiskia A, Papaconstantinou E (2002) Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew Chem Int Ed Engl 41(11):1911–1914

    Article  CAS  Google Scholar 

  • Tsuji T, Kakita T, Tsuji M (2003) Preparation of nano-size particle of silver with femtosecond laser ablation in water. Appl Surf Sci 206:314–320

    Article  CAS  Google Scholar 

  • Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120

    Article  CAS  Google Scholar 

  • Wang M, Yang N, Guo Z, Gu K, Shao A, Zhu W, Xu Y, Wang J, Prud’Homme RK, Guo X (2015) Facile preparation of AIE-active fluorescent nanoparticles through flash nanoprecipitation. Ind Eng Chem Res 54:4683–4688

    Article  CAS  Google Scholar 

  • Wyss U (1997) Root parasitic nematodes: an overview. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant-nematode interactions, vol 10. Kluwer Academic Publishers, Dordrecht, pp 5–24

    Chapter  Google Scholar 

  • Zunke U (1991) Observations on the invasion and endoparasitic behavior of the root lesion nematode Pratylenchus penetrans. J Nematol 22:309–320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabry, AK.H. (2019). Role of Nanotechnology Applications in Plant-Parasitic Nematode Control. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13296-5_12

Download citation

Publish with us

Policies and ethics