Skip to main content

Convexity in Greek Antiquity

  • Chapter
  • First Online:
Geometry in History
  • 1407 Accesses

Abstract

We consider several appearances of the notion of convexity in Greek antiquity, more specifically in mathematics and optics, in the writings of Aristotle, and in art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Timaeus, [23], 53C-55C.

  2. 2.

    The Conics, Book IV, [3, p. 172].

  3. 3.

    The Conics, Book IV, [3, p. 178].

  4. 4.

    The Conics, Book IV, [3, p. 183].

  5. 5.

    The quotations of Archimedes are from Heath’s translation [13].

  6. 6.

    “Terminated surfaces”, in Heath’s translation.

  7. 7.

    In this and the next quotes, since we follow Heath’s translation, we are using the word “extremities”, although the word “boundary” would have been closer to what we intend in modern geometry.

  8. 8.

    We are using modern terminology.

  9. 9.

    Ptolemy’s proof with the reference to Heiberg’s edition is quoted in Heath’s edition of Euclid [14, Vol. 2 p. 225].

  10. 10.

    Actually, in the cave passage ([22], Book VII, 514a–521d), not only images are distorted because the walls are not planar, but also one sees only shadows, apparent contours. Thom, in his Esquisse d’une sémiophysique ([34, p. 218] of the English translation) sees there the mathematical problem of reconstructing figures from their apparent contours.

  11. 11.

    The Latin word focus means fireplace, which led to the expression “burning mirror.”

  12. 12.

    The name refers to Ibn al-Haytham, the Arab scholar from the Middle Ages known in the Latin world as Alhazen, a deformation of the name “Al-Haytham.” Ibn al-Haytham is especially famous for his treatise on Optics (Kitāb al-manāzir), in seven books (about 1400 pages long), which was translated into Latin at the beginning of the thirteenth century, and which was influential on Johannes Kepler, Galileo Galilei, Christiaan Huygens and René Descartes, among others. An important part of what survives from his work in geometry and optics was translated and edited by Rashed [27, 28]. Ibn al-Haytham is the author of an “intromission” theory of vision saying that it is the result of light rays penetrating our eyes, contradicting the theories held by Euclid and Ptolemy who considered, on the contrary, that vision is the result of light rays emanating from the eye (“extramission” theory). It is possible though that Euclid, as a mathematician, adhered to the theory where visual perception is caused by light rays traveling along straight lines emitted from the eye that strike the objects seen, in order to develop his mathematical theory of optics as an application of Euclidean geometry. This also explains the fact that Euclid’s optics does not include any physiological theory of vision, nor any physical theory of colors, etc. Needless to say, besides this rough classification into an intromission theory and an extramission theory of light, there is a large amount of highly sophisticated and complex theories of vision and of light that were developed by Greek authors, which were related to the various philosophical schools of thought, and at the same time to the mathematical theories that were being developed.

  13. 13.

    See Footnote 12.

  14. 14.

    Au commencement de 1669 nous voyons Huygens absorbé par la mathématique. Il s’occupa du problème d’Alhazen. C’est là un des problèmes dont il a toujours eu l’ambition de trouver, par les sections coniques, la solution la plus élégante.

  15. 15.

    Vitellion is the name of a thirteenth-century mathematician who edited works of Alhazen on optics.

  16. 16.

    Nicomachean Ethics [6], 1102a-30.

  17. 17.

    Meteorology [5], 350a10.

  18. 18.

    Physics [8], 217a30-b5.

  19. 19.

    Physics [8], 222b1.

  20. 20.

    Mechanical problems [9], 847b.

  21. 21.

    Mechanical problems [9], 848a.

  22. 22.

    On the Gait of Animals [4], 704a15.

  23. 23.

    On the Gait of Animals [4], 712a.

  24. 24.

    Nel mezzo del cammin di nostra vita

    mi ritrovai per una selva oscura

    ché la diritta via era smarrita.

References

  1. A. A’Campo-Neuen and A. Papadopoulos, A path from curvature to convexity. In: Geometry in history (S. G. Dani and A. Papadopoulos, ed.) Springer Verlag, 2019.

    Google Scholar 

  2. Apollonius of Perga, Treatise on conic sections, ed. T. L. Heath, Cambridge University Press, 1896.

    Google Scholar 

  3. Apollonius: Les Coniques, tome 2: Livre IV, commentaire historique et mathématique, R. Rashed (ed.) Walter de Gruyter, 2009.

    Google Scholar 

  4. Aristotle, On the Gait of Animals, transl. A. S. L. Farquharson, In: The works of Aristotle translated into English, Oxford, Clarendon Press, Oxford, 1908.

    Google Scholar 

  5. Aristotle, Meteorology, translated by E. W. Webster In: The works of Aristotle translated into English, vol. III, ed. W. D. Ross, Oxford, Clarendon Press, 1923.

    Google Scholar 

  6. Aristotle, Nicomachean Ethics, transl. W. D. Ross, In: The works of Aristotle translated into English, vol. VII, Oxford, Clarendon Press, 1925.

    Google Scholar 

  7. Aristotle, The Problems, transl. E. S. Forster, In: The works of Aristotle translated into English, vol. VII, ed. W. D. Ross, Oxford, Clarendon Press, 1927.

    Google Scholar 

  8. Aristotle, The Physics, transl. P. Hardie and R. K. Gaye, In: The works of Aristotle translated into English, vol. II, ed. W. D. Ross and J. A. Smith, Oxford, Clarendon Press, 1930.

    Google Scholar 

  9. Aristotle, Mechanical problems, In: The works of Aristotle in Twenty-three volumes, vol. XIV, ed. W. S. Hett, The Loeb Classical Library, Cambridge (Mass.) and London, 1936.

    Google Scholar 

  10. Ph. de la Hire, Gnomonique ou l’art de tracer des cadrans ou horloges solaires sur toutes les surfaces, par différentes pratiques, avec les démonstrations géométriques de toutes les opérations, Paris Estienne Michallet, 1682.

    Google Scholar 

  11. Euclide, l’Optique et la catoptrique, trad., introduction et notes par P. Ver Eecke, Desclée de Brouwer, Bruges, 1938. Nouveau tirage, Librairie Albert Blanchard, Pari, 1959.

    Google Scholar 

  12. W. Fenchel, Convexity through the ages. In: Convexity and its Applications (P. M. Gruber and J. M. Wills, ed.), pp. 120–130, Birkhäuser, Basel, 1983.

    Google Scholar 

  13. T. L. Heath (ed.), The works of Archimedes, Cambridge University Press, 1897, Reprint, Dover, 2002.

    Google Scholar 

  14. T. L. Heath, The thirteen books of Euclid’s Elements, 3 volumes, Cambridge University Press, 1908, Reprint, Dover.

    Google Scholar 

  15. C. Huygens, Œuvres complètes, 22 volumes, Société Hollandaise des Sciences, La Haye, 1888–1950.

    Google Scholar 

  16. Iamblichus, Life of Pythagoras, transl. T. Taylor, Watkins, London, 1818.

    Google Scholar 

  17. A. Lejeune, Recherches sur la catoptrique grecque d’après les sources antiques et médiévales, Académie Royale de Belgique, Bruxelles, 1957.

    Google Scholar 

  18. O. Neugebauer, The astronomical origin of the theory of conic sections, Proc. Am. Phil. Soc. 92, No. 3 (1948), pp. 136–138.

    MathSciNet  MATH  Google Scholar 

  19. Pappus d’Alexandrie. La collection mathématique ; œuvre traduite pour la première fois du grec en français par Paul Ver Eecke. Paris, Bruges, Desclée de Brouwer, 1933.

    Google Scholar 

  20. C. Pedretti, Studi Vinciani: Documenti, Analisi e inediti leonardeschi, Librairie E. Droz, Paris, 1957.

    Google Scholar 

  21. F. C. Penrose, An Investigation of the Principles of Athenian Architecture; or, The Results of a Survey Conducted Chiefly with Reference to the Optical Refinements Exhibited in the Construction of the Ancient Buildings at Athens, Macmillan, London, 1888.

    Google Scholar 

  22. Plato, the Republic, transl. P. Shorey, Harvard University Press, 1935.

    Google Scholar 

  23. Plato, the Timaeus, translation with commentary by F. M. Cornford, Kegan Paul, Trench, Trubner, London, 1937.

    Google Scholar 

  24. Pliny, Natural history, tr. J. Bostock, Cambridge, 1857.

    Google Scholar 

  25. Proclus de Lycie, Les Commentaires sur le premier livre des Éléments d’Euclide. Traduits pour la première fois du grec en français avec une introduction et des notes par Paul Ver Eecke. Desclée de Brouwer, Bruges, 1948.

    Google Scholar 

  26. R. Rashed, Les catoptriciens grecs. I. Les miroirs ardents, Collection des Universités de France, Les Belles Lettres Paris, 2000.

    MATH  Google Scholar 

  27. R. Rashed, Ibn al-Haytham, New spherical geometry and astronomy, A History of Arabic sciences and mathematics, vol. 4, Routledge, Tayler and Francis, London and New York, 2014.

    Google Scholar 

  28. R. Rashed, Ibn al-Haytham’s Geometrical Methods and the Philosophy of Mathematics, vol. 5, Routledge, Taylor and Francis, London and New York, 2018.

    Google Scholar 

  29. A. I. Sabra, Ibn al-Haytham’s lemmas for solving “Alhazen’s Problem.” Arch. Hist. Exact Sci. 26 (1982), pp. 299–324.

    Article  MathSciNet  Google Scholar 

  30. A. I. Sabra (ed.), The optics of Ibn al-Haytham, Books I–III: On Direct vision. Translated and edited by A. I. Sabra, 2 volumes, London, Warburg Institute, University of London, 1989.

    Google Scholar 

  31. G. Simon, Roger Bacon et Kepler lecteurs d’Alhazen. Arch. Internat. Hist. Sci. 51 (2001), no. 146, pp. 38–54.

    MathSciNet  MATH  Google Scholar 

  32. A. M. Smith (ed.), Ptolemy’s Theory of Visual Perception: An English Translation of the Optics, with Introduction and Commentary, Trans. Am. Phil. Soc. Vol. 86, part 2, American Philosophical Society, Philadelphia, 1996.

    Google Scholar 

  33. A. M. Smith, Alhacen’s Theory of Visual Perception: A Critical Edition, with English Translation and Commentary, of the First Three Books of Alhacen’s De Aspectibus, the Medieval Latin Version of Ibn al-Haytham’s Kitāb al-Manāẓir, Transactions of the American Philosophical Society, Philadelphia, American Philosophical Society, 2001.

    Google Scholar 

  34. R. Thom, Esquisse d’une sémiophysique : Physique aristotélicienne et théorie des catastrophes, Paris, InterEditions, 1988. English translation by V. Meyer, Semio Physics: A Sketch. Aristotelian Physics and Catastrophe Theory, Addison-Wesley, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanase Papadopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papadopoulos, A. (2019). Convexity in Greek Antiquity. In: Dani, S.G., Papadopoulos, A. (eds) Geometry in History. Springer, Cham. https://doi.org/10.1007/978-3-030-13609-3_4

Download citation

Publish with us

Policies and ethics