Skip to main content

Improving Clinical Subjects Clustering by Learning and Optimizing Feature Weights

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11331))

  • 2031 Accesses

Abstract

Data analytics methods in the clinical domain are challenging to put into practice. Unsupervised learning provides opportunity for giving the level of personalization in evidence based decision-making that can otherwise only be achieved through the use of prediction models, by helping doctors gaining insights from data. In this context, grouping of clinical subjects, in terms of biomedical information of patients, is an important task for patient cohort identification for comparative effectiveness studies and clinical decision-support applications. It allows the decision-making process to leverage not only on data but also on doctors’ domain knowledge. However, one of the issues that needs to be addressed for a focused and realist unsupervised clustering of clinical subjects, is the fact that in the majority of the cases patients datasets are heterogeneous, i.e. their data features belong to several different feature spaces, e.g. nominal, ordinal, interval or rational, with completely different variation ranges and statistical distributions, affecting clustering quality and performance. In order to use these data measurements properly in an unsupervised manner, their corresponding weights need to be modeled. In this paper, we present a method for learning feature weights on clinical data. We show that learning feature weights is necessary in order to generate meaningful separation of data in high dimensional space. The method is based on silhouette score and principal component analysis, demonstrating its performance on a clinical test dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 187–210. Springer, Heidelberg (2005). https://doi.org/10.1007/0-387-28356-0_7

    Chapter  Google Scholar 

  2. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using clustering. Mach. Learn. 42, 143–175 (2001)

    Article  Google Scholar 

  3. Gendreau, M., Potvin, J.-Y.: Metaheuristics in combinatorial optimization. Ann. Oper. Res. 140, 189–213 (2005)

    Article  MathSciNet  Google Scholar 

  4. Goroshin, R., Bruna, J., Tompson, J., Eigen, D., LeCun, Y.: Unsupervised learning of spatiotemporally coherent metrics. In: ICCV 2015, pp. 4086–4093 (2015)

    Google Scholar 

  5. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press, Cambridge (1992)

    Book  Google Scholar 

  6. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002). https://doi.org/10.1007/b98835

    Book  MATH  Google Scholar 

  7. Jordan, M.I., Bishop, C.M.: Neural networks. In: Tucker, A.B. (ed.) Computer Science Handbook (Section VII: Intelligent Systems), 2nd edn, pp. 137–142. Chapman & Hall/CRC Press LLC, Boca Raton (2004)

    Google Scholar 

  8. Kang, J., Schwartz, R., Flickinger, J., Beriwal, S.: Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective. Int. J. Radiat. Oncol. Biol. Phys. 93(5), 1127–1135 (2015)

    Article  Google Scholar 

  9. Lameski, P., Zdravevski, E., Mingov, R., Kulakov, A.: SVM parameter tuning with grid search and its impact on reduction of model over-fitting. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds.) RSFDGrC 2015. LNCS (LNAI), vol. 9437, pp. 464–474. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25783-9_41

    Chapter  Google Scholar 

  10. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, vol. 146, pp. 363–397. Springer, USA (2010). https://doi.org/10.1007/978-1-4419-1665-5_12

    Chapter  Google Scholar 

  11. Modha, D.S., Scott Spangler, W.: Feature weighting in k-means clustering. J. Mach. Learn. 52, 217–237 (2001)

    Article  Google Scholar 

  12. Moore, J., Ackerman, M.: Foundations of perturbation robust clustering. In: Proceedings of the IEEE 16th International Conference on Data Mining (ICDM), pp. 1089–1094 (2016)

    Google Scholar 

  13. Pardalos, P.M., Resende, M.G.C.: Handbook of Applied Optimization. Oxford University Press, Oxford (2002)

    Book  Google Scholar 

  14. Pugh, J., Martinoli, A.: Discrete multi-valued particle swarm optimization. In: Proceedings of IEEE Swarm Intelligence Symposium, vol. 1, pp. 103–110 (2006)

    Google Scholar 

  15. Qian, B., Wang, X., Cao, N., Li, H., Jiang, Y.-G.: A relative similarity based method for interactive patient risk prediction. Data Min. Knowl. Discov. 29(4), 1070–1093 (2015)

    Article  MathSciNet  Google Scholar 

  16. Wang, F., Sun, J., Ebadollahi, S.: Composite distance metric integration by leveraging multiple experts’ inputs and its application in patient similarity assessment. Stat. Anal. Data Min. 5(1), 54–69 (2012)

    Article  MathSciNet  Google Scholar 

  17. Weinstein, J.N., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113–1120 (2013)

    Article  Google Scholar 

  18. Xiao, Y., Yu, J.: Partitive clustering (k-means family). Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 2(3), 209–225 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Consoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Consoli, S., Hendriks, M., Vos, P., Kustra, J., Mavroeidis, D., Hoffmann, R. (2019). Improving Clinical Subjects Clustering by Learning and Optimizing Feature Weights. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2018. Lecture Notes in Computer Science(), vol 11331. Springer, Cham. https://doi.org/10.1007/978-3-030-13709-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13709-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13708-3

  • Online ISBN: 978-3-030-13709-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics