Skip to main content

The Diatoms: From Eutrophic Indicators to Mitigators

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

Diatoms are heterokonts which are highly diverse and have significant evolutionary differences when compared with green algae and vascular plants. Diatoms drive primary production in all photic zones from the equator to arctic. Diatoms have great potential as bioindicators as their population diversity reflects the environmental conditions of their oceanic or riverine ecosystems. The ease of their detection and versatility across different ecosystems complements to their sensitivity to many physicochemical and biological changes. Diatom importance in marine and fresh water ecosystems is attributed to their primary role in aquatic food webs. Mass cultivation of microalgae for biodiesel and high-value products needs enormous supply of growth medium. Meeting this need from fresh water and fertilizers is not environmentally and economically sustainable. Hence, growing diatom algae utilizing the nutrient contents of wastewater will offer a natural wastewater treatment option with revenue generation potential. Constructed wetland-based decentralized wastewater treatment when followed by diatom treatment can reduce their footprint and increase their revenue generation potential. Performance monitoring of decentralized wastewater treatment facilities through standard physicochemical methods remains a challenge for remote locations as the time lag between sampling and analysis often diminishes the quality of performance evaluation. In this chapter we explore the enormous potential of diatom to augment the feasibility of constructed wetland as a sustainable wastewater treatment technology with simultaneous biomonitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidov M, Ramazanov Z, Seifulla R, Grachev S (2010) The effects of Xanthigen™ in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab 12(1):72–81

    CAS  Google Scholar 

  • Amano Y, Takahashi K, Machida M (2012) Competition between the cyanobacterium Microcystis aeruginosa and the diatom Cyclotella sp. under nitrogen-limited condition caused by dilution in eutrophic lake. J Appl Phycol 24(4):965–971

    CAS  Google Scholar 

  • Ansa E, Lubberding H, Ampofo J, Gijzen H (2011) The role of algae in the removal of Escherichia coli in a tropical eutrophic lake. Ecol Eng 37(2):317–324

    Google Scholar 

  • Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459(7244):185–192

    CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86

    CAS  Google Scholar 

  • Bennion H, Battarbee R (2007) The European Union water framework directive: opportunities for palaeolimnology. J Paleolimnol 38(2):285–295

    Google Scholar 

  • Black RW, Moran PW, Frankforter JD (2011) Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams. Environ Monit Assess 175(1–4):397–417

    CAS  Google Scholar 

  • Blinn D, Herbst D (2003) Use of diatoms and soft algae as indicators of environmental determinants in the Lahontan Basin, USA. Annual report for California state water resources board Contract agreement 704558

    Google Scholar 

  • Cantonati M, Angeli N, Virtanen L, Wojtal AZ, Gabrieli J, Falasco E, Lavoie I, Morin S, Marchetto A, Fortin C (2014) Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats. Sci Total Environ 475:201–215

    CAS  Google Scholar 

  • Carpelan LH (1978) Revision of Kolbe’s System der Halobien based on diatoms of California lagoons. Oikos 31:112–122

    Google Scholar 

  • Cibic T, Blasutto O (2011) Living marine benthic diatoms as indicators of nutrient enrichment: a case study in the Gulf of Trieste. In: Diatoms: classification, ecology and life cycle. Nova Science Publishers, Inc, New York, pp 169–184

    Google Scholar 

  • Cox EJ (1991) What is the basis for using diatoms as monitors of river quality? In: Whitton BA, Rott E, Friedrich G (eds) Use of Algae for Monitoring Rivers. Universität Innsbruck, Austria. pp 33–40

    Google Scholar 

  • Craggs RJ, Smith VJ, McAuley PJ (1995) Wastewater nutrient removal by marine microalgae cultured under ambient conditions in mini-ponds. Water Sci Technol 31(12):151–160

    CAS  Google Scholar 

  • Craggs RJ, McAuley PJ, Smith VJ (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31(7):1701–1707

    CAS  Google Scholar 

  • de Godos I, Vargas VA, Blanco S, González MCG, Soto R, García-Encina PA, Becares E, Muñoz R (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101 (14):5150-5158

    Google Scholar 

  • De la Rey P, Taylor J, Laas A, Van Rensburg L, Vosloo A (2004) Determining the possible application value of diatoms as indicators of general water quality: a comparison with SASS 5. Water SA 30(3):325–332

    Google Scholar 

  • De Pauw N, Beyst B, Heylen S (2000) Development of a biological assessment method for river sediments in Flanders, Belgium. Verh Int Ver Theor Angew Limnol 27(5):2703–2708

    Google Scholar 

  • Delgado C, Pardo I, García L (2010) A multimetric diatom index to assess the ecological status of coastal Galician rivers (NW Spain). Hydrobiologia 644(1):371–384

    CAS  Google Scholar 

  • Dell’Uomo A (1996) Assessment of water quality of an Apennine river as a pilot study for diatom-based monitoring of Italian watercourses. In: Use of algae for monitoring rivers. Eugen Rott, Innsbruck, pp 65–72

    Google Scholar 

  • Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol 11(1):45–52

    CAS  Google Scholar 

  • Descy J (1979) A new approach to water quality estimation using diatoms. Nova Hedwingia, Beiheft 64:305–323

    Google Scholar 

  • Descy J-P, Coste M (1991) A test of methods for assessing water quality based on diatoms. Verh Int Ver Theor Angew Limnol 24(4):2112–2116

    Google Scholar 

  • Dixit SS, Smol JP, Kingston JC, Charles DF (1992) Diatoms: powerful indicators of environmental change. Environ Sci Technol 26(1):22–33

    CAS  Google Scholar 

  • Eloranta P, Soininen J (2002) Ecological status of some Finnish rivers evaluated using benthic diatom communities. J Appl Phycol 14(1):1–7

    Google Scholar 

  • Eriksson PG, Weisner SE (1997) Nitrogen removal in a wastewater reservoir: the importance of denitrification by epiphytic biofilms on submersed vegetation. J Environ Qual 26(3):905–910

    CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374):200–206

    CAS  Google Scholar 

  • Falkowski PG, Katz ME, Milligan AJ, Fennel K, Cramer BS, Aubry MP, Berner RA, Novacek MJ, Zapol WM (2005) The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309(5744):2202–2204

    CAS  Google Scholar 

  • Findlay JA, Patil AD (1984) Antibacterial constituents of the diatom Navicula delognei. J Nat Prod 47(5):815–818

    CAS  Google Scholar 

  • Fore LS, Grafe C (2002) Using diatoms to assess the biological condition of large rivers in Idaho (USA). Freshw Biol 47(10):2015–2037

    Google Scholar 

  • Furnas MJ (1990) In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J Plankton Res 12(6):1117–1151

    Google Scholar 

  • Furse M, Hering D, Moog O, Verdonschot P, Johnson RK, Brabec K, Gritzalis K, Buffagni A, Pinto P, Friberg N (2006) The STAR project: context, objectives and approaches. Hydrobiologia 566(1):3–29

    Google Scholar 

  • Gaiser EE, Sullivan P, Tobias FA, Bramburger AJ, Trexler JC (2014) Boundary effects on benthic microbial phosphorus concentrations and diatom beta diversity in a hydrologically-modified, nutrient-limited wetland. Wetlands 34(1):55–64

    Google Scholar 

  • García L, Delgado C, Pardo I (2008) Seasonal changes of benthic communities in a temporary stream of Ibiza (Balearic Islands). Limnetica 27(2):259–272

    Google Scholar 

  • Gómez N, Licursi M (2001) The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquat Ecol 35(2):173–181

    Google Scholar 

  • González LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60(3):259–262

    Google Scholar 

  • Gottschalk F, Ort C, Scholz R, Nowack B (2011) Engineered nanomaterials in rivers–exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159(12):3439–3445

    CAS  Google Scholar 

  • Hecky RE, Kilham P (1973) Diatoms in alkaline, saline lakes: ecology and geochemical implications. Limnol Oceanogr 18(1):53–71

    CAS  Google Scholar 

  • Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PF (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51(9):1757–1785

    Google Scholar 

  • Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3(2):221–240

    CAS  Google Scholar 

  • Hong Y-W, Yuan D-X, Lin Q-M, Yang T-L (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56(8):1400–1405

    CAS  Google Scholar 

  • Ishida CK, Arnon S, Peterson CG, Kelly JJ, Gray KA (2008) Influence of algal community structure on denitrification rates in periphyton cultivated on artificial substrata. Microb Ecol 56(1):140–152

    Google Scholar 

  • Kelly M, Whitton B (1995) The trophic diatom index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7(4):433–444

    Google Scholar 

  • Kelly M, Cazaubon A, Coring E, Dell’Uomo A, Ector L, Goldsmith B, Guasch H, Hürlimann J, Jarlman A, Kawecka B (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10(2):215–224

    Google Scholar 

  • Kim SM, Jung Y-J, Kwon O-N, Cha KH, Um B-H, Chung D, Pan C-H (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166(7):1843–1855

    CAS  Google Scholar 

  • King L, Clarke G, Bennion H, Kelly M, Yallop M (2006) Recommendations for sampling littoral diatoms in lakes for ecological status assessments. J Appl Phycol 18(1):15–25

    Google Scholar 

  • Kooistra WH, Medlin L (1996) Evolution of the diatoms (Bacillariophyta) IV A reconstruction of their age from small subunit rRNA coding regions and fossil record. Mol Phylogenet Evol 6(3):391–407

    CAS  Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107

    Google Scholar 

  • Lamberti GA (1996) The role of periphyton in benthic food webs. In: Stevenson RJ, Bothwell ML, Lowe LR (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, California. pp 533–572

    Google Scholar 

  • Lavoie I, Campeau S (2010) Fishing for diatoms: fish gut analysis reveals water quality changes over a 75-year period. J Paleolimnol 43(1):121–130

    Google Scholar 

  • Lebeau T, Robert J (2003) Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl Microbiol Biotechnol 60(6):624–632

    CAS  Google Scholar 

  • Leclercq L, Maquet B (1987) Deux nouveaux indices chimique et diatomique de qualité d’eau courante: application au Samson et à ses affluents (Bassin de la Meuse Belge), comparaison avec d’autres indices chimiques, biocénotiques et diatomiques. Institut Royal des Sciences Naturelles de Belgique

    Google Scholar 

  • Leguay S, Lavoie I, Levy JL, Fortin C (2016) Using biofilms for monitoring metal contamination in lotic ecosystems: the protective effects of hardness and pH on metal bioaccumulation. Environ Toxicol Chem 35(6):1489–1501

    CAS  Google Scholar 

  • Leira M, Sabater S (2005) Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Res 39(1):73–82

    CAS  Google Scholar 

  • Leland HV (1995) Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use and other environmental factors. Can J Fish Aquat Sci 52(5):1108–1129

    Google Scholar 

  • Li Y, Gao J, Meng F, Chi J (2015) Enhanced biodegradation of phthalate acid esters in marine sediments by benthic diatom Cylindrotheca closterium. Sci Total Environ 508:251–257

    CAS  Google Scholar 

  • Lobo E, Bes D, Tudesque L, Ector L (2004) Water quality assessment of the Pardinho River, RS, Brazil, using epilithic diatom assemblages and faecal coliforms as biological indicators. Vie Milieu 54(2–3):115–126

    Google Scholar 

  • Lougheed VL, Parker CA, Stevenson RJ (2007) Using non-linear responses of multiple taxonomic groups to establish criteria indicative of wetland biological condition. Wetlands 27(1):96–109

    Google Scholar 

  • Lynn SG, Price DJ, Birge WJ, Kilham SS (2007) Effect of nutrient availability on the uptake of PCB congener 2, 2′, 6, 6′-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquat Toxicol 83(1):24–32

    CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390

    CAS  Google Scholar 

  • Marella TK, Tiwari A, Bhaskar MV (2015) A new novel solution to grow diatom algae in large natural water bodies and its impact on CO2 capture and nutrient removal. J Algal Biomass Util 6(2):22–27

    Google Scholar 

  • Marella TK, Parine NR, Tiwari A (2018) Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water. Saudi J Biol Sci 25 (4):704–709

    Google Scholar 

  • McCormick PV, Cairns J (1994) Algae as indicators of environmental change. J Appl Phycol 6(5–6):509–526

    Google Scholar 

  • Milligan AJ, Morel FM (2002) A proton buffering role for silica in diatoms. Science 297(5588):1848–1850

    CAS  Google Scholar 

  • Muxika I, Borja A, Bald J (2007) Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Mar Pollut Bull 55(1–6):16–29

    CAS  Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC, Hall RO, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452(7184):202

    CAS  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    CAS  Google Scholar 

  • Naviner M, Bergé J-P, Durand P, Le Bris H (1999) Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 174(1):15–24

    CAS  Google Scholar 

  • Nixon SW (2009) Eutrophication and the macroscope. Hydrobiologia 629(1):5–19

    CAS  Google Scholar 

  • Olguın EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22(1–2):81–91

    Google Scholar 

  • Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 357–394

    Google Scholar 

  • Passy SI, Bode RW, Carlson DM, Novak MA (2004) Comparative environmental assessment in the studies of benthic diatom, macroinvertebrate, and fish communities. Int Rev Hydrobiol 89(2):121–138

    CAS  Google Scholar 

  • Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12(3–5):395–400

    Google Scholar 

  • Poulíčková A, Duchoslav M, Dokulil M (2004) Littoral diatom assemblages as bioindicators of lake trophic status: a case study from perialpine lakes in Austria. Eur J Phycol 39(2):143–152

    Google Scholar 

  • Prygiel J, Lévêque L, Iserentant R (1996) A new Practical Diatom Index for the assessment of water quality in monitoring networks. J Water Sci 9(1):97–113

    CAS  Google Scholar 

  • Prygiel J, Coste M, Bukowska J (1999) Review of the major diatom-based techniques for the quality assessment of rivers-state of the art in Europe. In: Prygiel J, Whitton BA, Bukowska J (eds) Use of algae for monitoring rivers, vol 3. Agences de l’Eau Artois-Picardie, Douai, pp 224–238

    Google Scholar 

  • Patrick R (1961) A study of the number and kinds of species found in rivers of the Eastern Unisted States. Proc Acad Natl Sci Phila 113 : 215–258.

    Google Scholar 

  • Payne WJ (1991) A review of methods for field measurements of denitrification. Forest Ecol Manag 44 (1):5-14

    Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58(2):179–207

    CAS  Google Scholar 

  • Raven JA (1987) The role of vacuoles. New Phytol 106(3):357–422

    Google Scholar 

  • Renaud S, Parry D, Thinh L, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3(1):43–53

    CAS  Google Scholar 

  • Renuka N, Sood A, Prasanna R, Ahluwalia A (2015) Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int J Environ Sci Technol 12(4):1443–1460

    CAS  Google Scholar 

  • Rott E, Pipp E, Pfister P (2003) Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophic indication methods used in Europe. Algol Stud 110(1):91–115

    Google Scholar 

  • Rott E, Pipp E, Pfister E, van Dam H, Orther K, Binder N, Pall K (1999) Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewassern. Teil 2, Trophieindikation. Bundesministerium für Land, und Forstwirtschaft, Wien 248.

    Google Scholar 

  • Ruhland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Chang Biol 14(11):2740–2754

    Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101(1):58–64

    CAS  Google Scholar 

  • Sládeček V (1986) Diatoms as indicators of organic pollution. CLEAN–Soil, Air, Water 14(5):555–566

    Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150(1):25–32

    CAS  Google Scholar 

  • Stevenson J (2014) Ecological assessments with algae: a review and synthesis. J Phycol 50(3):437–461

    Google Scholar 

  • Stevenson RJ, Pan Y (1999) Assessing environmental conditions in rivers and streams with diatoms. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences, vol 1(4). Cambridge University Press, Cambridge

    Google Scholar 

  • Stoermer E (1978) Phytoplankton assemblages as indicators of water quality in the Laurentian Great Lakes. Trans Am Microsc Soc 97:2–16

    Google Scholar 

  • Stoermer EF, Yang JJ (1970) Distribution and relative abundance of dominant plankton diatoms in Lake Michigan. University of Michigan, Ann Arbor

    Google Scholar 

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13(1):349–372

    Google Scholar 

  • Torrisi M, Scuri S, Dell’Uomo A, Cocchioni M (2010) Comparative monitoring by means of diatoms, macroinvertebrates and chemical parameters of an Apennine watercourse of central Italy: the river Tenna. Ecol Indic 10(4):910–913

    CAS  Google Scholar 

  • Valiente Moro C, Bricheux G, Portelli C, Bohatier J (2012) Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environ Toxicol Chem 31(4):778–786

    Google Scholar 

  • Wagner H, Jakob T, Wilhelm C (2006) Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol 169(1):95–108

    CAS  Google Scholar 

  • Walden WC, Hentges DJ (1975) Differential effects of oxygen and oxidation reduction potential on the multiplication of three species of anaerobic intestinal bacteria. Appl Microbiol 30(5):781–785

    CAS  Google Scholar 

  • Walsh G, Wepener V (2009) The influence of land use on water quality and diatom community structures in urban and agriculturally stressed rivers. Water SA 35(5):579–594

    CAS  Google Scholar 

  • Watanabe T (1988) Numerical water quality monitoring of organic pollution using diatom assemblages. In: Proceedings of the 9th international diatom symposium, 1988. Biopress Limited, Koeltz Scientific Books, Bristol

    Google Scholar 

  • Weckström K, Juggins S (2006) Coastal diatom–environment relationships from the Gulf of Finland, Baltic Sea. J Phycol 42(1):21–35

    Google Scholar 

  • Weilhoefer C, Pan Y (2007) A comparison of diatom assemblages generated by two sampling protocols. J N Am Benthol Soc 26(2):308–318

    Google Scholar 

  • Wetzel RG (1981) Longterm dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments. Verh Int Ver Theor Angew Limnol 21(1):369–381

    CAS  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135(11):1115–1122

    CAS  Google Scholar 

  • Wu J-T, Kow L-T (2002) Applicability of a generic index for diatom assemblages to monitor pollution in the tropical River Tsanwun, Taiwan. J Appl Phycol 14(1):63–69

    Google Scholar 

  • Wu X, Mitsch WJ (1998) Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands 18(1):9–20

    Google Scholar 

  • Yamamoto T, Goto I, Kawaguchi O, Minagawa K, Ariyoshi E, Matsuda O (2008) Phytoremediation of shallow organically enriched marine sediments using benthic microalgae. Mar Pollut Bull 57(1):108–115

    CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1989) Omega-3 fatty acids: alternative sources of production. Process Biochem 24(4):117–125

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, A., Marella, T.K., Tiwari, A., Wani, S.P. (2019). The Diatoms: From Eutrophic Indicators to Mitigators. In: Gupta, S.K., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13913-1_2

Download citation

Publish with us

Policies and ethics