Skip to main content

The Solar Interior

  • Chapter
  • First Online:
New Millennium Solar Physics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 458))

  • 1377 Accesses

Abstract

Neutrinos allow us to look into the interior of the Sun, in particular by observing the neutrino fluxes that come from the Sun’s core, which yield stringent tests whether we understand the nuclear physics and calculate the correct temperatures and densities in solar or stellar cores. The source of solar energy was solved in the 1920s, when Hans Bethe, George Gamov, and Carl von Weizsäcker identified the relevant nuclear chain reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

(3.1) Solar Neutrino Problem Solved

  • Ahmad, Q.R., Allen, R.C., Andersen, T.C., et al. 2001, Measurement of the rate ν e + dp + p + e interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory (SNO), Phys.Rev.Lett. 87/7, 071301, [1520 c, 92 c/y].

    Google Scholar 

  • Ahmad, Q.R., Allen, R.C., Andersen, T.C., et al. 2002, Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys.Rev.Lett. 89/1, 011301-1, [1986 c, 128 c/y].

    Google Scholar 

  • Bahcall, J.N., Pinsonneault, M.H., and Basu, S. 2001, Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties, ApJ 555, 990, [648 c, 39 c/y],

    Google Scholar 

  • Bahcall, J.N., Gonzalez-Garcia, M.C., and Pena-Garay, C. 2003, Does the Sun shine by pp or CNO fusion reactions? Phys.Rev.Lett. 90/13, 131301, [28 c, 2 c/y].

    Google Scholar 

  • Bellini, G., Benziger, J., Bick, D., et al. 2014, Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy, Phys.Rev. D 89/11, id. 112007, [98 c, 28 c/y].

    Google Scholar 

  • Gribov, V. and Pontecorvo, B. 1969, Neutrino astronomy and lepton charge, Phys.Lett. B 28/7, 493, [558 c, 11 c/y].

    Google Scholar 

  • Haxton, W.C., Hamish Robertson, R.G., and Serenelli, A.M. 2013, Solar neutrinos: Status and prospects, ARAA 51, 21, [82 c, 15 c/y].

    Google Scholar 

  • Ianni, A. 2014, Solar neutrinos and the solar model, Physics of the Dark Universe 4, 44, [8 c, 2 c/y].

    Google Scholar 

  • Turck-Chieze, S., Couvidat, S., Kosovichev, A.G. et al. 2001, Solar neutrino emission deduced from a seismic model, ApJ 555, 69, [130 c, 8 c/y].

    Google Scholar 

(3.2) New Solar Standard Models

  • Asplund, M., Grevesse, N., Sauval, A.J., et al. 2009, The chemical composition of the Sun, ARAA 47, 481, [3297 c, 388 c/y].

    Google Scholar 

  • Basu, S. 2016, Global seismology of the Sun, LRSP 13, 2, [8 c, 5 c/y].

    Google Scholar 

  • Grevesse, N., Scott, P., Asplund, M., and Sauval, A.J. 2015, The elemental composition of the Sun. III. The heavy elements Cu to Th, A&A 573, A27, [64 c, 26 c/y].

    Google Scholar 

  • Ianni, A. 2014, Solar neutrinos and the solar model, Physics of the Dark Universe 4, 44, [8 c, 2 c/y].

    Google Scholar 

  • Prandtl, L. 1925, Bericht über Untersuchungen zur ausgebildeten Turbulenz, Zeitschr. Angew. Math. Mech. 5, 136.

    Article  ADS  MATH  Google Scholar 

  • Vinyoles, N., Serenelli, A.M.,Villante, F.L., et al. 2017, A new generation of standard solar models, ApJ 835, 202, [14 c, 14 c/y].

    Google Scholar 

(3.3) Helioseismology: Meridional Flows

  • Basu, S. 2016, Global seismology of the Sun, LRSP 13, 2, [8 c, 5 c/y].

    Google Scholar 

  • Brun, A.S., Miesch, M.S., and Toomre, J. 2011, Modeling the dynamical coupling of solar convection with the radiative interior, ApJ 742, 79, [84 c, 13 c/y].

    Google Scholar 

  • Chen, R. and Zhao, J.W. 2017, A comprehensive method to measure solar meridional circulation and the center-to-limb effect using time-distance helioseismology, ApJ 849, 144.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J. 2002, Helioseismology, Rev.Modern Phys. 74/4, 1073, [305 c, 20 c/y].

    Google Scholar 

  • Dikpati, M. 2014, Generating the Sun’s global circulation from differential rotation and turbulent Reynolds stresses, MNRAS 438, 2380, [13 c, 4 c/y].

    Google Scholar 

  • Gough, D. 2013, What have we learned from helioseismology, what have we really learned, and what do we aspire to learn? SoPh 287, 9, [13 c, 3 c/y].

    Google Scholar 

  • Hazra, G., Karak, B.B., and Choudhuri, A.R. 2014, Is a deep one-cell meridional circulation essential for the flux transport solar dynamo, ApJ 782, 93, [42 c, 12 c/y].

    Google Scholar 

  • Hathaway, D.H., Upton, L., and Colegrove, O. 2013, Giant convection cells found on the Sun, Science 342, 1217, [37 c, 8 c/y].

    Google Scholar 

  • Hotta, H., Rempel, M., and Yokoyama, T. 2015, High-resolution calculation of the solar global convection with the reduced speed of sound technique: II. Near surface shear layer with the rotation, ApJ 798, 51, [26 c, 10 c].

    Google Scholar 

  • Jackiewicz, J., Serebryanskiy, A., and Kholikov, S. 2015, Meridional flow in the solar convection zone. II. Helioseismic inversions of GONG data, ApJ 805, 133, [22 c, 9 c/y].

    Google Scholar 

  • Kholikov, S., Serebryanskiy, A., Jackiewicz, J. 2014, Meridional flow in the solar convection zone. I. Measurements from GONG data, ApJ 784, 145, [25 c, 7 c/y].

    Google Scholar 

  • Komm, R., Gonzalez Hernandez I., Hill, F., et al. 2013, Subsurface meridional flow from HMI using the ring-diagram pipeline, SoPh 287, 85, [23 c, 5 c/y].

    Google Scholar 

  • Kosovichev, A.G., Duvall, T.L.Jr., and Scherrer, P.H. 2000, Time-distance inversion methods and results (Invited review), SoPh 192, 159, [240 c, 14 c/y].

    Google Scholar 

  • Kosovichev, A.G. 2011, Advances in global and local helioseismology: An introductory review, Lecture Notes in Physics 832, 3, [12 c, 2 c/y].

    Google Scholar 

  • Rajaguru, S.P. and Antia, H.M. 2015, Meridional circulation in the convection zone: Time-distance helioseismic inferences from 4 years of HMI/SDO observations, ApJ 813, 114, [28 c, 11 c/y].

    Google Scholar 

  • Schad, A., Timmer, J., and Roth, M. 2013, Global helioseismic evidence for a deeply penetrating solar meridional flow consistent with multiple flow cells, ApJ 778, L38, [54 c, 12 c/y].

    Google Scholar 

  • Schad, A., Jouve, L., Duvall, T.L.Jr., et al. 2016, Recent developments in helioseismic analysis methods and solar data assimilation, SSRv 196, 221, [1 c, 0.7 c/y].

    Google Scholar 

  • Zhao, J.W., Bogart, R.S., Kosovichev, A.G., et al. 2013, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun, ApJ 774, L29, [131 c, 29 c/y].

    Google Scholar 

  • Zhao, J.W., Kosovichev, A.G., Bogart, R.S. 2014, Solar meridional flow in the shallow interior during the rising phase of Cycle 24 ApJ 789, L7, [13 c, 4 c/y].

    Google Scholar 

(3.4) Helioseismology: Solar Interior Rotation

  • Guerrero, G. and de Gouveia Del Pion 2008, Turbulent magnetic pumping in a Babcock-Leighton solar dynamo model, A&A 485, 267 [80 c, 8 c/y].

    Google Scholar 

  • Guerrero, G., Smolarkiewicz, P.K., Kosovichev, A.G. et al. 2013, Differential rotation in solar-like stars from global simulations, ApJ 779, 176, [44 c, 10 c/y].

    Google Scholar 

  • Guerrero, G., Smolarkiewicz, P.K., Gouveia, D.P., et al. 2016, Understanding solar torsional oscillations from global dynamo models, ApJ 828, L3, [9 c, 6 c/y].

    Google Scholar 

  • Hathaway, D.H., Upton, L., and Colegrove, O. 2013, Giant convection cells found on the Sun, Science 342, 1217, [37 c, 8 c/y].

    Google Scholar 

  • Howard, R. and LaBonte B.J. 1980, The Sun is observed to be a torsional oscillator with a period of 11 years, ApJ 239, L33, [372 c, 10 c/y].

    Google Scholar 

  • Howe, R. 2009, Solar interior rotation and its variation, LRSP 6, 1, [116 c, 14 c/y].

    Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, J., et al. 2000, Dynamic variations at the base of the solar convection zone, Science 287, 2456, [318 c, 18 c/y].

    Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., et al. 2005, Solar convection-zone dynamics, ApJ 634, 1405, [58 c, 5 c/y].

    Google Scholar 

  • Howe, R., Rempel, M., Christensen-Dalsgaard, J., et al. 2006, Solar convection zone dynamics: How sensitive are inversions to subtle dynamo features? ApJ 649, 1155, [27 c, 2 c/y].

    Google Scholar 

  • Kitiashvili, I.N., Kosovichev, A.G., Mansour, N.N., et al. 2016, Dynamics of turbulent convection and convective overshoot in a moderate-mass star, ApJ 821, L17, [6 c, 4 c/y].

    Google Scholar 

  • Pipin, V.V. and Kosovichev, A.G. 2018, Meridional circulation and torsional oscillations in a self-consistent solar dynamo model, astro-ph arXiv1708.03073v1.

    Google Scholar 

  • Rempel, M. 2007, Origin of solar torsional oscillations, ApJ 655, 651, [30 c, 3 c/y],

    Google Scholar 

  • Schou, J., Howe, R., Basu, S., et al. 2002, A comparison of solar p-mode parameters from the Michelson Doppler Imager (MDI) and the Global Oscillation Network Group (GONG): Splitting coefficients and rotation inversions, ApJ 567, 1234, [87 c, 6 c/y].

    Google Scholar 

  • Toutain, T. and Kosovichev, A.G. 1994, A new estimate of the solar core rotation from IPHIR, A&A 284, 265, [30 c, 1 c/y].

    Google Scholar 

(3.5) Local Helioseismology

  • Braun, D.C. and Lindsey, C. 2001, Seismic imaging of the far hemisphere of the Sun, ApJL 560, L189, [39 c, 2 c/y].

    Google Scholar 

  • Gizon, L. and Birch, A.C. 2005, Local helioseismology, LRSP 2, 6, [124 c, 10 c/y].

    Google Scholar 

  • Gizon, L. and Thompson, M.J. 2007, Outstanding problems in local helioseismology, Astron.Nachrichten 328/3, 204, [7 c, 0.7 c/y].

    Google Scholar 

  • Gizon, L., Birch, A.C., and Spruit, H. 2010, Local helioseismology: 3-D imaging of the solar interior, ARAA, 48, 289, [108 c, 14 c/y].

    Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, J., et al. 2000, Dynamic variations at the base of the solar convection zone, Science 287, 2456, [318 c, 18 c/y].

    Google Scholar 

  • Kosovichev, A.G., Duvall, T.L.Jr., and Scherrer, P.H. 2000, Time-distance inversion methods and results (Invited review), SoPh 192, 159, [240 c, 14 c/y].

    Google Scholar 

  • Kosovichev, A.G. 2011, Advances in global and local helioseismology: An introductory review, Lecture Notes in Physics 832, 3, [12 c, 2 c/y].

    Google Scholar 

  • Kosovichev, A.G. 2012, Local helioseismology of sunspots: Current status and perspectives, SoPh 279, 323, [21 c, 4 c/y].

    Google Scholar 

  • Liewer, P.C., Qiu, J., and Lindsey, C. 2017, Comparison of helioseismic far-side active region detections with STEREO far-side EUV observations of solar activity, SoPh 292, 146.

    ADS  Google Scholar 

  • Lindsey, C. and Braun, D.C. 2000, Seismic images of the far side of the Sun, Science 287, 1799, [82 c, 5 c/y].

    Google Scholar 

  • Rempel, M. 2007, Origin of solar torsional oscillations, ApJ 655, 651, [33 c, 3 c/y].

    Google Scholar 

  • Thompson, M.J. and Zharkov, S. 2008, Recent developments in local helioseismology, SoPh 251, 225, [15 c, 2 c/y].

    Google Scholar 

  • Zhao, J.W., Kosovichev, A.G., and Duvall, T.L.Jr. 2001, Investigation of mass flows beneath a sunspot by time-distance helioseismology, ApJ 557, 384, [192 c, 12 c/y].

    Google Scholar 

  • Zhao, J.W. and Kosovichev, A.G. 2004, Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the Sun by time-distance helioseismology, ApJ 603, 776, [250 c, 19 c/y].

    Google Scholar 

(3.6) Limit-Cycle Oscillations of the Solar Dynamo

  • Aschwanden, M.J., Scholkmann, F., Béthume, W. 2018, Order out of randomness: Self-organization processes in astrophysics, SSRv 214, 55.

    ADS  Google Scholar 

  • Cameron, R. and Schüssler, M. 2017a, An update of Leighton’s solar dynamo model, A&A 599, A52, [2 c, 2 c/y].

    Google Scholar 

  • Cameron, R. and Schüssler, M. 2017b, Understanding solar cycle variability, ApJ 843, 111, [2 c, 2 c/y].

    Google Scholar 

  • Charbonneau, P. 2005, 2010, Dynamo models of the solar cycle, LRSP 2, 2 (2005); 7, 3 (2010), [410 c, 47 c/y].

    Google Scholar 

  • Charbonneau, P. 2013, Solar and stellar dynamos, in Saas-Fee Advanced Course 38, Swiss Society for Astrophysics and Astronomy, Steiner (ed.), 237p, e-book, [9 c, 1 c/y].

    Google Scholar 

  • Consolini, G., Tozzi, R., and De Michelis, P. 2009, Complexity in sunspot cycle, A&A 506, 1381, [12 c, 1 c/y].

    Google Scholar 

  • Solanki, S.K., Schüssler, M., and Fligge, M. 2000, Evolution of the Sun’s large-scale magnetic field since the Maunder minimum, Nature 408/6811, 445, [173 c, 10 c/y].

    Google Scholar 

  • Tobias, S.M., Weiss, N.O., and Kirk, V. 1995, Chaotically modulated stellar dynamos, MNRAS 273, 1150, [94 c, 4 c/y].

    Google Scholar 

(3.7) Solar Cycle Prediction

  • Bushby, P.J. and Tobias, S.M. 2007, On predicting the solar cycle using mean-field models, ApJ 661, 1289, [45 c, 4 c/y].

    Google Scholar 

  • Hathaway, D.H. 2010, 2015, The solar cycle, LRSP 7, 1 (2010), 12:4 (2015), [311 c, 61 c/y].

    Google Scholar 

  • Kitiashvili, I., and Kosovichev, A.G. 2008, Application of Data Assimilation Method for Predicting Solar Cycles, ApJ 688, L49, [44 c, 5 c/y].

    Google Scholar 

  • Kitiashvili, I. 2016, Data assimilation approach for forecast of solar activity cycles, ApJ 831, 15, [1 c, 1 c/y].

    Google Scholar 

  • Pesnell, W.D. 2012, Solar cycle predictions, SoPh 281, 507, [52 c, 9 c/y].

    Google Scholar 

  • Petrovay, K. 2010, Solar cycle prediction, LRSP 7, 6, [73 c, 10 c/y].

    Google Scholar 

  • Schatten, K.H., Scherrer, P.H., Svalgaard, L., and Wilcox, J.M. 1978, Using dynamo theory to predict the sunspot number during solar cycle 21, GRL 5, 411, [172 c, 4 c/y].

    Google Scholar 

  • Schatten, K.H. 2005, Fair space weather for solar cycle 24, GRL 32/21, L21106, [112 c, 9 c/y].

    Google Scholar 

  • Sheeley, N.R. 2005, Surface evolution of the Sun’s magnetic field: A historical review of the flux-transport mechanism, LRSP 2, 5, [50 c, 4 c/y].

    Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., et al. 2015, On polar magnetic field reversal and surface flux transport during solar cycle 24, ApJ 798, 114, [35 c, 14 c/y].

    Google Scholar 

  • Svalgaard, L., Cliver, E.W., and Kamide, Y. 2005, Sunspot cycle 24: Smallest cycle in 100 years ? GRL 32, L01104, [195 c, 16 c/y].

    Google Scholar 

  • Svalgaard, L. and Cliver, E.W. 2007, A floor in the solar wind magnetic field, ApJ 661, L203, [61 c, 6 c/y].

    Google Scholar 

  • Svalgaard, L. and Schatten, K.H. 2008, Predicting solar cycle 24, AGU meeting 2008, abstract SH51A-1593.

    Google Scholar 

  • Svalgaard, L. and Cliver, E.W. 2010, Heliospheric magnetic field 1835–2009, JGR 115, A09111, [56 c, 7 c/y].

    Google Scholar 

  • Svalgaard, L. 2014, Correction of errors in scale values for magnetic elements for Helsinki 2014, Ann.Geophys. 32, 633. [12 c, 3 c/y].

    Google Scholar 

  • Tobias, S., Hughes, D., and Weiss, N. 2006, Unpredictable Sun leaves researchers in the dark, Nature 442, 26, [28 c, 2 c/y].

    Google Scholar 

  • Usoskin, I.G. 2008, 2013, 2017, A history of solar activity over millennia, LRSP 5, 3 (2008); 10, 1 (2013); 14, 3 (2017), [191 c, 52 c/y].

    Google Scholar 

  • Wang, Y.M., Lean, J.L., and Sheeley, N.R.Jr. 2005, Modeling the Sun’s magnetic field and irradiance since 1713, ApJ 625, 522, [335 c, 27 c/y].

    Google Scholar 

(3.8) Magneto-Convection and Convective Dynamos

  • Augustson, K., Brun, A.S., Miesch, M., et al. 2015, Grand minima and equatorward propagation in a cycling stellar convective dynamo, ApJ 809, 149, [56 c, 22 c/y].

    Google Scholar 

  • Fan, Y. 2001, Nonlinear growth of the 3-D undular instability of a horizontal magnetic layer and the formation of arching flux tubes, ApJ 546, 509, [51 c, 3 c/y].

    Google Scholar 

  • Fan, Y. 2004, 2009, Magnetic fields in the solar convection zone, LRSP 1, 1 (2004), 6:4 (2009), [197 c, 23 c/y].

    Google Scholar 

  • Fan, Y. 2008, The 3-D evolution of buoyant magnetic flux tubes in a model solar convective envelope. ApJ 676, 680, [67 c, 7 c/y].

    Google Scholar 

  • Fan, Y. and Fang, F. 2014, A simulation of convective dynamo in the solar convective envelope: Maintenance of the solar-like differential rotation and emerging flux, ApJ 789, 35, [50 c, 14 c/y].

    Google Scholar 

  • Gilman, P.A. and Glatzmaier, G.A. 1981, Compressible convection in a rotating spherical shell. I. Anelastic equations, ApJS 45, 335, [146 c, 4 c/y].

    Google Scholar 

  • Glatzmaier, G.A. 1984, Numerical simulations of stellar convective dynamos. I. The model and method, J. Comput. Phys. 55, 46, [301 c, 9 c/y].

    Google Scholar 

  • Gough, D.O. 1969, The anelastic approximation for thermal convection, J. Atmos.Sci. 26, 448, [128 c, 4 c/y].

    Google Scholar 

  • Hotta, H., Rempel, M., and Yokoyama, T. 2016, Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations, Science 351, Issue 6280, 1427, [35 c, 23 c/y].

    Google Scholar 

  • Käpylä, P.J., Mantere, M.J., and Brandenburg, A. 2012, Cyclic magnetic activity due to trubulent convection in spherical wedge geometry, ApJ 755, L22, [110 c, 20 c/y].

    Google Scholar 

  • Lantz, S.R. and Fan, Y. 1999, Anelastic MHD equations for modeling solar and stellar convection zones, ApJ 121, 247, [85 c, 5 c/y].

    Google Scholar 

  • Miesch, M.S. 2005, Large-scale dynamics of the convection zone and tachocline, LRSP 2, 1, [149 c, 12 c/y].

    Google Scholar 

  • Nelson, N.H., Brown, B.P., Brun, A.S., et al. 2011, Buoyant magnetic loops in a global dynamo simulation of a Young Sun, ApJ 739, L38, [42 c, 6 c/y].

    Google Scholar 

  • Nordlund, A, Stein, R.F., and Asplund, M. 2009, Solar surface convection, LRSP 6, 2, [169 c, 20 c/y].

    Google Scholar 

  • Stein, R.F. 2012, Solar surface magneto-convection, LRSP 9, 4, [33 c, 6 c/y].

    Google Scholar 

(3.9) Magnetic Flux Emergence

  • Abbett, W.P. and Fisher, G.H. 2003, A coupled model for the emergence of active region magnetic flux into the solar corona, ApJ 582, 475, [48 c, 3 c/y].

    Google Scholar 

  • Abbett, W.P. 2007, The magnetic connection between the convection zone in the Quiet Sun, ApJ 665, 1469, [102 c, 10 c/y].

    Google Scholar 

  • Archontis, V., Hood, A.W., Savcheva, A. et al. 2009, On the structure and evolution of complexity in sigmoids: A flux emergence model, ApJ 691, 1276, [45 c, 5 c/y].

    Google Scholar 

  • Chen, F., Rempel, M., and Fan, Y. 2017, Emergence of magnetic flux generated in a solar convective dynamo. I. The formation of sunspots and active regions, and the origin of their asymmetries, ApJ 846, 149, [6 c, 6 c/y].

    Google Scholar 

  • Cheung, M.C.M., Schüssler, M., and Moreno-Insertis, F. 2007, Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures, A&A 467, 703, [118 c, 11 c/y].

    Google Scholar 

  • Cheung, M.C.M., Schüssler, M., Tarbell, T.D., et al. 2008, Solar surface emerging flux regions” A comparative study of radiative MHD modeling and Hinode SOT observations, ApJ 687, 1373, [127 c, 13 c/y].

    Google Scholar 

  • Cheung, M.C.M., Rempel, M., Title, A.M. et al. 2010, Simulation of the formation of a solar active region, ApJ 720, 233, [159 c, 21 c/y].

    Google Scholar 

  • Cheung, M.C.M. and Isobe, H. 2014, Flux emergence (theory), LRSP 11, 3, [38 c, 11 c/y].

    Google Scholar 

  • Fan, Y. 2001a, Nonlinear growth of the 3-D undular instability of a horizontal magnetic layer and the formation of arching flux tubes, ApJ 546, 509, [51 c, 3 c/y].

    Google Scholar 

  • Fan, Y. 2001b, The emergence of a twisted Ω-tube into the solar atmosphere, ApJ 554, L111, [202 c, 12 c/y].

    Google Scholar 

  • Fan, Y. and Gibson, S.E. 2003, The emergence of a twisted magnetic flux tube into a preexisting coronal arcade, ApJ 589, L105, [135 c, 9 c/y].

    Google Scholar 

  • Fan, Y. and Gibson, S.E. 2004, Numerical simulations of 3-D coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes, ApJ 609, 1123, [191 c, 14 c/y].

    Google Scholar 

  • Fan, Y. 2004, 2009, Magnetic fields in the solar convection zone, LRSP 1, 1 (2004), 6, 4 (2009), [197 c, 23 c/y].

    Google Scholar 

  • Gibson, S.E., Fan, Y., Mandrini, C., et al. 2004, Observational consequences of a magnetic flux rope emerging into the corona, ApJ 617, 600, [103 c, 8 c/y].

    Google Scholar 

  • Hurlburt, N.E., Toomre, J., and Massaguer, J.M. 1984, 2-D compressible convection extending over multiple scale heights, ApJ 282, 557. [143 c, 4 c/y].

    Google Scholar 

  • Isobe, H., Proctor, M.R.E., and Weiss, N.O. 2008, Convection-driven emergence of small-scale magnetic fields and their role in coronal heating and solar wind acceleration, ApJ 679, L57, [63 c, 7 c/y].

    Google Scholar 

  • Leake, J.E., Linton, M.G., and Török, T. 2013, Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes, ApJ 778, 99, [47 c, 10 c/y].

    Google Scholar 

  • Manchester, W.IV. 2001, The role of nonlinear Alfvén waves in shear formation during solar magnetic flux emergence, ApJ 547, 503, [53 c, 3 c/y].

    Google Scholar 

  • Manchester, W.IV. 2004, Eruption of a buoyantly emerging magnetic flux rope, ApJ 610, 588, [199 c, 15 c/y].

    Google Scholar 

  • Martinez-Sykora, J., Hansteen, V., and Carlsson, M. 2008, Twisted flux tube emergence from the convection zone to the corona, ApJ 679, 871, [109 c, 11 c/y].

    Google Scholar 

  • Martinez-Sykora, J., Hansteen, V., Carlsson, M. 2009, Twisted flux tube emergence from the convection zone to the corona. II. Later states, ApJ 702, 129, [53 c, 6 c/y].

    Google Scholar 

  • Martinez-Sykora, J., De Pontieu, B., Testa, P., and Hansteen, V. 2011, Forward modeling of emission in SDO/AIA passbands from dynamic 3-D simulations. ApJ 743, 23, [25 c, 4 c/y].

    Google Scholar 

  • Masada, Y., Sano, T. 2016, Spontaneous formation of surface magnetic structure from large-scale dynamo in strongly stratified convection, ApJ 822, L22, [6 c, 4 c/y].

    Google Scholar 

  • Matsumoto, R., Taima, T., Shibata, K., et al. 1993, 3-D MHD of the emerging magnetic flux in the solar atmosphere, ApJ 414, 357, [83 c, 3 c/y].

    Google Scholar 

  • Pariat, E., Aulanier, G., Schmieder, B., et al. 2004, Resistive emergence of undulatory flux tubes, ApJ 614, 1099. [133 c, 10 c/y].

    Google Scholar 

  • Rempel, M. and Cheung, M.C.M. 2014, Numerical simulations of active region scale flux emergence: From spot formation to decay, ApJ 785, 90, [45 c, 13 c/y].

    Google Scholar 

  • Stein, R.F., Lagerfjärd, A., Nordlund, A., and Georgobiani, D. 2011, Solar flux emergence simulations, SoPh 268, 271, [55 c, 8 c/y].

    Google Scholar 

  • Spruit, H. 1987, Is there a weak mixed polarity background field? Theoretical arguments, SoPh 110, 115, [99 c, 3 c/y].

    Google Scholar 

  • Toriumi, S. and Yokoyama, T. 2011, Numerical experiments on the two-step emergence of twisted magnetic flux tubes in the Sun, ApJ 735, 126, [19 c, 3 c/y].

    Google Scholar 

  • Tortosa-Andreu, A. and Moreno-Insertis, F. 2009, Magnetic flux emergence into the solar photosphere and chromosphere, A&A 507, 949, [43 c, 5 c/y].

    Google Scholar 

(3.10) Magnetic Helicity Injection and Condensation

  • Antiochos, S.K. 2013, Helicity condensation as the origin of coronal and solar wind structure, ApJ 772, 72, [23 c, 5 c/y].

    Google Scholar 

  • Blackman, E.G. 2015, Magnetic helicity and large scale magnetic fields; A primer, SSRv 188, 59, [17 c, 7 c/y].

    Google Scholar 

  • Knizhnik, K.J., Antiochos, S.K., and DeVore, C.R. 2015, Filament channel formation via magnetic helicity condensation, ApJ 809, 137, [10 c, 4 c/y].

    Google Scholar 

  • Knizhnik, K.J., Antiochos, S.K., and DeVore, C.R. 2017, The role of magnetic helicity in structuring the solar corona, ApJ 835, 85, [3 c, 3 c/y].

    Google Scholar 

  • Mackay, D.H., DeVore, C.R., and Antiochos, S.K. 2014, Global-scale consequences of magnetic helicity injection and condensation on the Sun, ApJ 784, 164, [15 c, 4 c/y].

    Google Scholar 

  • Parker, E. 1972, Topological dissipation and the small-scale fields in turbulent gases, ApJ 174, 499, [632 c, 14 c/y].

    Google Scholar 

  • Parker, E. 1988, Nanoflares and the solar x-ray corona, ApJ 330, 474, [1063 c, 36 c/y].

    Google Scholar 

  • Pevtsov, A.A., Berger, M.A., Nindos, A., et al. 2014, Magnetic helicity, tilt, and twist, SSRv 186, 285, [27 c, 8 c/y].

    Google Scholar 

  • Schrijver, C.J. 2007, Braiding-induced interchange reconnection of the magnetic field and the width of solar coronal loops, ApJ 662, L119, [28 c, 3 c/y].

    Google Scholar 

  • Valori, G., Pariat, E., Anfinogentov, S. et al. 2016, Magnetic helicity estimations in models and observations of the solar magnetic field. Part I: Finite Volume Methods, SSRv 201, 147, [7 c, 5 c/y].

    Google Scholar 

  • Zhao, L., DeVore, C.R., Antiochos, S.K., et al. 2015, Numerical simulations of helicity condensation in the solar corona, ApJ 805, 61, [5 c, 2 c/y].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aschwanden, M.J. (2019). The Solar Interior. In: New Millennium Solar Physics. Astrophysics and Space Science Library, vol 458. Springer, Cham. https://doi.org/10.1007/978-3-030-13956-8_3

Download citation

Publish with us

Policies and ethics