Skip to main content

Discrete Mesh Optimization on GPU

  • Chapter
  • First Online:
27th International Meshing Roundtable (IMR 2018)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 127))

Included in the following conference series:

Abstract

We present an algorithm called discrete mesh optimization (DMO), a greedy approach to topology-consistent mesh quality improvement. The method requires a quality metric for all element types that appear in a given mesh. It is easily adaptable to any mesh and metric as it does not rely on differentiable functions. We give examples for triangle, quadrilateral, and tetrahedral meshes and for various metrics. The method improves quality iteratively by finding the optimal position for each vertex on a discretized domain. We show that DMO outperforms other state of the art methods in terms of convergence and runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Aizinger, C. Dawson, A discontinuous galerkin method for two-dimensional flow and transport in shallow water. Adv. Water Res. 25(1), 67–84 (2002)

    Article  Google Scholar 

  2. N. Amenta, M. Bern, D. Eppstein, Optimal point placement for mesh smoothing. J. Algorithms 30(2), 302–322 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Babuška, A.K. Aziz, On the angle condition in the finite element method. SIAM J. Numer. Anal. 13(2), 214–226 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. T.J. Baker, Mesh movement and metamorphosis. Eng. Comput. 18(3), 188–198 (2002)

    Article  Google Scholar 

  5. R.E. Bank, R.K. Smith, Mesh smoothing using a posteriori error estimates. SIAM J. Numer. Anal. 34(3), 979–997 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.E. Bank, A Software Package for Solving Elliptic Partial Differential Equations–Users Guide 7.0. Frontiers in Applied Mathematics, vol. 15 (SIAM, Philadelphia, 1998)

    Google Scholar 

  7. T.D. Blacker, M.B. Stephenson, Paving: a new approach to automated quadrilateral mesh generation. Int. J. Numer. Methods Eng. 32(4), 811–847 (1991)

    Article  MATH  Google Scholar 

  8. T.D. Blacker, M.B. Stephenson, S. Canann, Analysis automation with paving: a new quadrilateral meshing technique. Adv. Eng. Softw. Work. 13(5–6), 332–337 (1991)

    Article  MATH  Google Scholar 

  9. F.J. Blom, Considerations on the spring analogy. Int. J. Numer. Methods Fluids 32(6), 647–668 (2000)

    Article  MATH  Google Scholar 

  10. M.L. Brewer, L.F. Diachin, P.M. Knupp, T. Leurent, D.J. Melander, The mesquite mesh quality improvement toolkit, in IMR (2003)

    Google Scholar 

  11. S.A. Canann, Y.-C. Liu, A.V. Mobley, Automatic 3d surface meshing to address today’s industrial needs. Finite Elem. Anal. Des. 25(1–2), 185–198 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. S.A. Canann, J.R. Tristano, M.L. Staten et al., An approach to combined laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes, in IMR (1998), pp. 479–494. Citeseer

    Google Scholar 

  13. V.F. De Almeida, Domain deformation mapping: application to variational mesh generation. SIAM J. Sci. Comput. 20(4), 1252–1275 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ch. Farhat, C. Degand, B. Koobus, M. Lesoinne, Torsional springs for two-dimensional dynamic unstructured fluid meshes. Comput. Methods Appl. Mech. Eng. 163(1–4), 231–245 (1998)

    Article  MATH  Google Scholar 

  15. D.A. Field, Laplacian smoothing and delaunay triangulations. Int. J. Numer. Methods Biomed. Eng. 4(6), 709–712 (1988)

    MATH  Google Scholar 

  16. M.S. Floater, Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. L.A. Freitag, On combining laplacian and optimization-based mesh smoothing techniques. ASME Applied mechanics division-publications-amd, vol. 220 (1997), pp. 37–44

    Google Scholar 

  18. L.A. Freitag, P.M. Knupp, Tetrahedral mesh improvement via optimization of the element condition number. Int. J. Numer. Methods Eng. 53(6), 1377–1391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Freitag, P. Plassmann, M Jones, An efficient parallel algorithm for mesh smoothing. Technical report, Argonne National Laboratory, IL (1995)

    Google Scholar 

  20. L. Freitag, M. Jones, P. Plassmann, A parallel algorithm for mesh smoothing. SIAM J. Sci. Comput. 20(6), 2023–2040 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. L.A. Freitag, P. Plassmann et al., Local optimization-based simplicial mesh untangling and improvement. Int. J. Numer. Methods Eng. 49(1), 109–125 (2000)

    Article  MATH  Google Scholar 

  22. P.-L. George, H. Borouchaki, Delaunay Triangulation and Meshing: Application to Finite Elements (Hermés Science, Paris, 1998)

    MATH  Google Scholar 

  23. C. Georgiadis, P.-A. Beaufort, J. Lambrechts, J.-F. Remacle, High quality mesh generation using cross and asterisk fields: application on coastal domains. arXiv preprint arXiv:1706.02236 (2017)

    Google Scholar 

  24. L.R. Herrmann, Laplacian-isoparametric grid generation scheme. J. Eng. Mech. Div. 102(5), 749–907 (1976)

    Google Scholar 

  25. T.R. Jensen, B. Toft, Graph Coloring Problems, vol. 39 (Wiley, New York, 2011)

    MATH  Google Scholar 

  26. R.E. Jones, Qmesh: a self-organizing mesh generation program. Technical report, Sandia Laboratories, Albuquerque, NM (1974)

    Google Scholar 

  27. J. Kim, A multiobjective mesh optimization algorithm for improving the solution accuracy of pde computations. Int. J. Comput. Methods 13(01), 1650002 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. P.M. Knupp, Winslow smoothing on two-dimensional unstructured meshes. Eng. Comput. 15(3), 263–268 (1999)

    Article  MATH  Google Scholar 

  29. P.M. Knupp, Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II – a framework for volume mesh optimization and the condition number of the Jacobian matrix. Int. J. Numer. Methods Eng. 48(8), 1165–1185 (2000)

    MATH  Google Scholar 

  30. P.M. Knupp, Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23(1), 193–218 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Knupp, Updating meshes on deforming domains: an application of the target-matrix paradigm. Int. J. Numer. Methods Biomed. Eng. 24(6), 467–476 (2008)

    MathSciNet  MATH  Google Scholar 

  32. M. Křížek, On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29(2), 513–520 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Park, S.M. Shontz, Two derivative-free optimization algorithms for mesh quality improvement. Procedia Comput. Sci. 1(1), 387–396 (2010)

    Article  Google Scholar 

  34. P.-O. Persson, Mesh size functions for implicit geometries and pde-based gradient limiting. Eng. Comput. 22(2), 95–109 (2006)

    Article  Google Scholar 

  35. P.-O. Persson, G. Strang, A simple mesh generator in matlab. SIAM Rev. 46(2), 329–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Rangarajan, On the resolution of certain discrete univariate max–min problems. Comput. Optim. Appl. 68(1), 163–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Rangarajan, A.J. Lew, Provably robust directional vertex relaxation for geometric mesh optimization. SIAM J. Sci. Comput. 39(6), A2438–A2471 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Rumpf, A variational approach to optimal meshes. Numer. Math. 72(4), 523–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Shewchuk, What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures. Preprint. University of California at Berkeley, 73:137 (2002)

    Google Scholar 

  40. Shewchuk. Stellar: A tetrahedral mesh improvement program, 05-23-2018. Available from: https://people.eecs.berkeley.edu/~jrs/stellar/input_meshes.zip

  41. S.M. Shontz, S.A. Vavasis, A mesh warping algorithm based on weighted laplacian smoothing, in IMR (2003), pp. 147–158

    Google Scholar 

  42. H. Xu, T.S. Newman, 2D FE quad mesh smoothing via angle-based optimization, in International Conference on Computational Science (Springer, Berlin, 2005), pp. 9–16

    MATH  Google Scholar 

  43. K. Xu, X. Gao, G. Chen, Hexahedral mesh quality improvement via edge-angle optimization. Comput. Graph. 70, 17–27 (2018)

    Article  Google Scholar 

  44. P.D. Zavattieri, E.A. Dari, G.C. Buscaglia, Optimization strategies in unstructured mesh generation. Int. J. Numer. Methods Eng. 39(12), 2055–2071 (1996)

    Article  MATH  Google Scholar 

  45. T. Zhou, K. Shimada, An angle-based approach to two-dimensional mesh smoothing, in IMR (2000), pp. 373–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Zint .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zint, D., Grosso, R. (2019). Discrete Mesh Optimization on GPU. In: Roca, X., Loseille, A. (eds) 27th International Meshing Roundtable. IMR 2018. Lecture Notes in Computational Science and Engineering, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-13992-6_24

Download citation

Publish with us

Policies and ethics