Skip to main content

Blockchain-Based Privacy Preserving Deep Learning

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11449))

Included in the following conference series:

Abstract

Smart mobile devices have access to huge amounts of data appropriate to deep learning models, which in turn can significantly improve the end-user experience on mobile devices. But massive data collection required for machine learning introduce obvious privacy issues. To this end, the notion of federated learning (FL) was proposed, which leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. However, in many applications one or more Byzantine devices may suffice to let current coordination learning mechanisms fail with unpredictable or disastrous outcomes. In this paper, we provide a proof-of-concept for managing security issues in federated learning systems via blockchain technology. Our approach uses decentralized programs executed via blockchain technology to establish secure learning coordination mechanisms and to identify and exclude Byzantine members. We studied the performance of our blockchain-based approach in a collective deep-learning scenario both in the presence and absence of Byzantine devices and compared our results to those obtained with an existing collective decision approach. The results show a clear advantage of the blockchain approach when Byzantine devices are part of the members.

Supported by Natural Science Fund of Shaanxi Province #K05074.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poushter, J.: Smartphone ownership and internet usage continues to climb in emerging economies. Pew Research Center Report (2016)

    Google Scholar 

  2. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data (2016). arXiv preprint: arXiv:1602.05629

  3. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  4. Buterin, V.: A next-generation smart contract and decentralized application platform. Ethereum project white paper (2014). https://github.com/ethereum/wiki/wiki/White-Paper

  5. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum project yellow paper (2014). http://gavwood.com/paper.pdf

  6. Hannun, A., Case, C., Casper, J., et al.: DeepSpeech: scaling up end-to-end speech recognition (2014). arXiv:1412.5567

  7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification (2015). arXiv:1502.01852

  8. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: ICASSP (2013)

    Google Scholar 

  9. Hinton, G., Deng, L., Yu, D., Dahl, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  11. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. In: Document Analysis and Recognition (2013)

    Google Scholar 

  12. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: CVPR (2014)

    Google Scholar 

  13. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_3

    Chapter  Google Scholar 

  14. Du, W., Han, Y., Chen, S.: Privacy-preserving multivariate statistical analysis: linear regression and classification. In: SDM, vol. 4, pp. 222–233 (2004)

    Google Scholar 

  15. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: KDD (2002)

    Google Scholar 

  16. Vaidya, J., Kantarcoğlu, M., Clifton, C.: Privacy-preserving Naive Bayes classification. VLDB 17(4), 879–898 (2008)

    Article  Google Scholar 

  17. Jagannathan, G., Wright, R.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: KDD (2005)

    Google Scholar 

  18. Dwork, C., Rothblum, G., Vadhan, S.: Boosting and differential privacy. In: FOCS (2010)

    Google Scholar 

  19. Chaudhuri, K., Sarwate, A., Sinha, K.: A near-optimal algorithm for differentially-private principal components. JMLR 14(1), 2905–2943 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: NIPS (2009)

    Google Scholar 

  21. Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M.: Functional mechanism: regression analysis under differential privacy. VLDB 5(11), 1364–1375 (2012)

    Google Scholar 

  22. Rubinstein, B., Bartlett, P., Huang, L., Taft, N.: Learning in a large function space: privacy-preserving mechanisms for SVM learning. J. Priv. Confidentiality 4(1), 4 (2012)

    Google Scholar 

  23. Sarwate, A., Chaudhuri, K.: Signal processing and machine learning with differential privacy: algorithms and challenges for continuous data. IEEE Signal Process. Mag. 30(5), 86–94 (2013)

    Article  Google Scholar 

  24. Chaudhuri, K., Monteleoni, C., Sarwate, A.: Differentially private empirical risk minimization. JMLR 12, 1069–1109 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Wainwright, M., Jordan, M., Duchi, J.: Privacy aware learning. In: NIPS (2012)

    Google Scholar 

  26. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)

    Google Scholar 

  27. Hamm, J., Cao, P., Belkin, M.: Learning privately from multiparty data. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 555–563 (2016)

    Google Scholar 

  28. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-supervised knowledge transfer for deep learning from private training data. In: Proceedings of the 5th International Conference on Learning Representations (2017)

    Google Scholar 

  29. Hitaj, B., Ateniese, G., Pérez-Cruz, F.: Deep models under the GAN: information leakage from collaborative deep learning. CoRR, vol. abs/1702.07464 (2017)

    Google Scholar 

  30. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  31. Georgiev, P., Lane, N.D., Rachuri, K.K., Mascolo, C.: DSP.Ear: leveraging co-processor support for continuous audio sensing on smartphones. In: Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pp. 295–309. ACM (2014)

    Google Scholar 

  32. Peters, G.W., Panayi, E.: Understanding modern banking ledgers through blockchain technologies: future of transaction processing and smart contracts on the internet of money. In: Tasca, P., Aste, T., Pelizzon, L., Perony, N. (eds.) Banking Beyond Banks and Money. NEW, pp. 239–278. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42448-4_13

    Chapter  Google Scholar 

  33. Kuo, T.T., Kim, H.-E., Ohno-Machado, L.: Blockchain distributed ledger technologies for biomedical and health care applications. J. Am. Med. Inform. Assoc. 24(6), 1211–1220 (2017)

    Article  Google Scholar 

  34. Kuo, T.T., Ohno-Machado, L.: ModelChain: decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks (2018). arXiv preprint: arXiv:1802.01746

  35. Topol, E.J.: Money back guarantees for non-reproducible results? BMJ 353, i2770 (2016)

    Article  Google Scholar 

  36. Baxendale, G.: Can blockchain revolutionise EPRs? ITNOW 58(1), 38–39 (2016)

    Article  Google Scholar 

  37. Taylor, P.: Applying blockchain technology to medicine traceability (2016)

    Google Scholar 

  38. Brodersen, C., Kalis, B., Leong, C., et al.: Applying blockchain technology to medicine traceability (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Li, H., Yu, Y. (2019). Blockchain-Based Privacy Preserving Deep Learning. In: Guo, F., Huang, X., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2018. Lecture Notes in Computer Science(), vol 11449. Springer, Cham. https://doi.org/10.1007/978-3-030-14234-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14234-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14233-9

  • Online ISBN: 978-3-030-14234-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics