Skip to main content

Cholesterol as a Key Molecule That Regulates TRPV1 Channel Function

  • Chapter
  • First Online:
Direct Mechanisms in Cholesterol Modulation of Protein Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1135))

Abstract

Cholesterol is the one of the major constituents of cell membranes providing these structures with a certain degree of rigidity. Proteins, such as ion channels, are molecules inserted in cell membranes and their activity is regulated by cholesterol and other molecules of a lipidic nature present in them. The molecular mechanisms underlying the regulation of ion channels by lipids and similar molecules have been an object of study for several years. A little over two decades ago, the first mammalian member of the Transient Receptor Potential (TRP) family of ion channels was cloned. This protein, the TRPV1 channel, was shown to integrate several types of noxious signals in sensory neurons and to participate in processes associated to the generation of pain. Thus, TRPV1 has become the target of intense research directed towards finding potential inhibitors of its activity in an effort to control pain. To date, several activators and positive modulators of the activity of TRPV1 have been described. However, very few naturally-occurring inhibitors are known. An endogenously-produced molecule that inhibits the activity of TRPV1 is cholesterol. This chapter focuses on describing the mechanisms by which the activity of TRPV1 can be regulated by this sterol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith ES, Lewin GR. Nociceptors: a phylogenetic view. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009;195:1089–106. https://doi.org/10.1007/s00359-009-0482-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li H. TRP channel classification. Adv Exp Med Biol. 2017;976:1–8. https://doi.org/10.1007/978-94-024-1088-4_1.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, et al. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423:33–41. https://doi.org/10.1038/nature01580.

    Article  CAS  PubMed  Google Scholar 

  4. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619–47. https://doi.org/10.1146/annurev.physiol.68.040204.100431.

    Article  CAS  PubMed  Google Scholar 

  5. Mickle AD, Shepherd AJ, Mohapatra DP. Nociceptive TRP channels: sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals (Basel). 2016;9:E72. https://doi.org/10.3390/ph9040072.

    Article  CAS  Google Scholar 

  6. Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S, Van Ranst N, et al. A TRP channel trio mediates acute noxious heat sensing. Nature. 2018;555:662–6. https://doi.org/10.1038/nature26137.

    Article  CAS  PubMed  Google Scholar 

  7. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–29.

    Article  CAS  PubMed  Google Scholar 

  8. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 2007;448:204–8. https://doi.org/10.1038/nature05910.

    Article  CAS  PubMed  Google Scholar 

  9. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature. 2002;418:186–90. https://doi.org/10.1038/nature00894.

    Article  CAS  PubMed  Google Scholar 

  10. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24. https://doi.org/10.1038/39807.

    Article  CAS  PubMed  Google Scholar 

  11. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. Heat-evoked activation of the ion channel, TRPV4. J Neurosci. 2002;22:6408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature. 1999;398:436–41. https://doi.org/10.1038/18906.

    Article  CAS  PubMed  Google Scholar 

  13. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004;427:260–5. https://doi.org/10.1038/nature02282.

    Article  CAS  PubMed  Google Scholar 

  14. Taberner FJ, Fernandez-Ballester G, Fernandez-Carvajal A, Ferrer-Montiel A. TRP channels interaction with lipids and its implications in disease. Biochim Biophys Acta. 2015;1848:1818–27. https://doi.org/10.1016/j.bbamem.2015.03.022.

    Article  CAS  PubMed  Google Scholar 

  15. Levine JD, Alessandri-Haber N. TRP channels: targets for the relief of pain. Biochim Biophys Acta. 2007;1772:989–1003. https://doi.org/10.1016/j.bbadis.2007.01.008.

    Article  CAS  PubMed  Google Scholar 

  16. Morales-Lazaro SL, Simon SA, Rosenbaum T. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). J Physiol. 2013;591:3109–21. https://doi.org/10.1113/jphysiol.2013.251751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao M, Cao E, Julius D, Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 2013;504:107–12. https://doi.org/10.1038/nature12822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salazar H, Llorente I, Jara-Oseguera A, Garcia-Villegas R, Munari M, Gordon SE, et al. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat Neurosci. 2008;11:255–61. https://doi.org/10.1038/nn2056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morales-Lazaro SL, Llorente I, Sierra-Ramirez F, Lopez-Romero AE, Ortiz-Renteria M, Serrano-Flores B, et al. Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch. Nat Commun. 2016;7:13092. https://doi.org/10.1038/ncomms13092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jansson ET, Trkulja CL, Ahemaiti A, Millingen M, Jeffries GD, Jardemark K, et al. Effect of cholesterol depletion on the pore dilation of TRPV1. Mol Pain. 2013;9:1. https://doi.org/10.1186/1744-8069-9-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu M, Huang W, Wu D, Priestley JV. TRPV1, but not P2X, requires cholesterol for its function and membrane expression in rat nociceptors. Eur J Neurosci. 2006;24:1–6. https://doi.org/10.1111/j.1460-9568.2006.04889.x.

    Article  CAS  PubMed  Google Scholar 

  22. Szoke E, Borzsei R, Toth DM, Lengl O, Helyes Z, Sandor Z, et al. Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol. 2010;628:67–74. https://doi.org/10.1016/j.ejphar.2009.11.052.

    Article  CAS  PubMed  Google Scholar 

  23. Liu B, Hui K, Qin F. Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys J. 2003;85:2988–3006. https://doi.org/10.1016/S0006-3495(03)74719-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Picazo-Juarez G, Romero-Suarez S, Nieto-Posadas A, Llorente I, Jara-Oseguera A, Briggs M, et al. Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem. 2011;286:24966–76. https://doi.org/10.1074/jbc.M111.237537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saha S, Ghosh A, Tiwari N, Kumar A, Kumar A, Goswami C. Preferential selection of Arginine at the lipid-water-interface of TRPV1 during vertebrate evolution correlates with its snorkeling behaviour and cholesterol interaction. Sci Rep. 2017;7:16,808. https://doi.org/10.1038/s41598-017-16780-w.

    Article  CAS  Google Scholar 

  26. Song Y, Kenworthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci. 2014;23:1–22. Epub 2013/10/25. https://doi.org/10.1002/pro.2385.

    Article  CAS  PubMed  Google Scholar 

  27. Rietveld A, Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta. 1998;1376:467–79.. Epub 1998/11/07

    Article  CAS  PubMed  Google Scholar 

  28. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50. Epub 2010/01/02. https://doi.org/10.1126/science.1174621.

    Article  CAS  PubMed  Google Scholar 

  29. Dart C. Lipid microdomains and the regulation of ion channel function. J Physiol. 2010;588:3169–78. Epub 2010/06/04. https://doi.org/10.1113/jphysiol.2010.191585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levitan I, Singh DK, Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front Physiol. 2014;5:65. https://doi.org/10.3389/fphys.2014.00065.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Romanenko VG, Rothblat GH, Levitan I. Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys J. 2002;83:3211–22. https://doi.org/10.1016/S0006-3495(02)75323-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh DK, Rosenhouse-Dantsker A, Nichols CG, Enkvetchakul D, Levitan I. Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem. 2009;284:30,727–36. https://doi.org/10.1074/jbc.M109.011221.

    Article  CAS  Google Scholar 

  33. Rosenhouse-Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I. Identification of novel cholesterol-binding regions in Kir2 channels. J Biol Chem. 2013;288:31,154–64. https://doi.org/10.1074/jbc.M113.496117.

    Article  CAS  Google Scholar 

  34. Bukiya AN, Belani JD, Rychnovsky S, Dopico AM. Specificity of cholesterol and analogs to modulate BK channels points to direct sterol-channel protein interactions. J Gen Physiol. 2011;137:93–110. https://doi.org/10.1085/jgp.201010519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Addona GH, Sandermann H Jr, Kloczewiak MA, Miller KW. Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site. Biochim Biophys Acta. 2003;1609:177–82.

    Article  CAS  PubMed  Google Scholar 

  36. Sooksawate T, Simmonds MA. Effects of membrane cholesterol on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology. 2001;40:178–84.

    Article  CAS  PubMed  Google Scholar 

  37. Robinson LE, Shridar M, Smith P, Murrell-Lagnado RD. Plasma membrane cholesterol as a regulator of human and rodent P2X7 receptor activation and sensitization. J Biol Chem. 2014;289:31983–94. https://doi.org/10.1074/jbc.M114.574699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–7. https://doi.org/10.1210/endo.139.12.6390.

    Article  CAS  PubMed  Google Scholar 

  39. Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep. 2011;1:69. https://doi.org/10.1038/srep00069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, et al. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure. 2008;16:897–905. https://doi.org/10.1016/j.str.2008.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumari S, Kumar A, Sardar P, Yadav M, Majhi RK, Kumar A, et al. Influence of membrane cholesterol in the molecular evolution and functional regulation of TRPV4. Biochem Biophys Res Commun. 2015;456:312–9. https://doi.org/10.1016/j.bbrc.2014.11.077.

    Article  CAS  PubMed  Google Scholar 

  42. Cantero-Recasens G, Gonzalez JR, Fandos C, Duran-Tauleria E, Smit LA, Kauffmann F, et al. Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma. J Biol Chem. 2010;285:27532–5. https://doi.org/10.1074/jbc.C110.159491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McIntosh TJ, Simon SA. Roles of bilayer material properties in function and distribution of membrane proteins. Annu Rev Biophys Biomol Struct. 2006;35:177–98. https://doi.org/10.1146/annurev.biophys.35.040405.102022.

    Article  CAS  PubMed  Google Scholar 

  44. Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A. Pore dilation of neuronal P2X receptor channels. Nat Neurosci. 1999;2:315–21. https://doi.org/10.1038/7225.

    Article  CAS  PubMed  Google Scholar 

  45. Chung MK, Guler AD, Caterina MJ. TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci. 2008;11:555–64. https://doi.org/10.1038/nn.2102.

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Kim D, Bianchi BR, Cavanaugh EJ, Faltynek CR, Kym PR, et al. Pore dilation occurs in TRPA1 but not in TRPM8 channels. Mol Pain. 2009;5:3. https://doi.org/10.1186/1744-8069-5-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li M, Toombes GE, Silberberg SD, Swartz KJ. Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nat Neurosci. 2015;18:1577–83. https://doi.org/10.1038/nn.4120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci. 2003;23:4054–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Binshtok AM, Bean BP, Woolf CJ. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature. 2007;449:607–10. https://doi.org/10.1038/nature06191.

    Article  CAS  PubMed  Google Scholar 

  50. de Meyer F, Smit B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci U S A. 2009;106:3654–8. https://doi.org/10.1073/pnas.0809959106.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu B, Qin F. Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3. Proc Natl Acad Sci U S A. 2017;114:1589–94. https://doi.org/10.1073/pnas.1615304114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klein AS, Tannert A, Schaefer M. Cholesterol sensitises the transient receptor potential channel TRPV3 to lower temperatures and activator concentrations. Cell Calcium. 2014;55:59–68. https://doi.org/10.1016/j.ceca.2013.12.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Dirección General de Asuntos del Personal Académico (DGAPA)-Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) IN206819 and by Estímulos a Investigaciones Médicas Miguel Alemán Valdés to S.LM.L. and Consejo Nacional de Ciencia y Tecnología (CONACyT) A1-S-8760, grant from Fronteras en la Ciencia No. 77 from CONACyT and DGAPA-PAPIIT IN200717 to T.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara L. Morales-Lázaro or Tamara Rosenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morales-Lázaro, S.L., Rosenbaum, T. (2019). Cholesterol as a Key Molecule That Regulates TRPV1 Channel Function. In: Rosenhouse-Dantsker, A., Bukiya, A. (eds) Direct Mechanisms in Cholesterol Modulation of Protein Function. Advances in Experimental Medicine and Biology, vol 1135. Springer, Cham. https://doi.org/10.1007/978-3-030-14265-0_6

Download citation

Publish with us

Policies and ethics