Skip to main content

Innovating for Sustainable Agriculture

  • Chapter
  • First Online:
Economics of Bioresources
  • 294 Accesses

Abstract

Bioresources can be produced endlessly if nature is used with care. However, today’s farming involves linear chains of producers in which animal and mineral fertilizers, pesticides, and other materials are supplied externally with much energy use and pollution. In addition, large material losses to the environment are observed and residuals are inefficiently reused. Possibilities to enhance the circularity in the agricultural chain are addressed because it is a key factor in the development of sustainable agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.solidairy.eu.

  2. 2.

    https://www.ilvo.vlaanderen.be.

  3. 3.

    https://www.groenkennisnet.nl/nl/groenkennisnet/dossier/dossier-fab.htm.

References

  • Ag4impact (2018) https://ag4impact.org/sid/genetic-intensification/livestock-breeding/cross-breeding/

  • Anten NPR (2018) Functional biodiversity in crop-crop and crop-weed interactions. https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Centre-for-Crop-Systems-Analysis/MScBSc-theses/Functional-biodiversity-in-crop-crop-and-crop-weed-interactions.htm

  • Balesdent J et al (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53(3–4):215–230

    Article  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    Article  Google Scholar 

  • Campbell B et al (2017) Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol Soc 22(4):8

    Article  Google Scholar 

  • Cordell D, White S (2014) Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Ann Rev Env Resour 39:161–188

    Google Scholar 

  • de Boer IJM, van Ittersum MK (2018) Circularity in agricultural production. Animal production systems and Plant production systems. Wageningen University and Research

    Google Scholar 

  • de Goede DM (2014) Understanding robustness as an image of sustainable agriculture. PhD thesis, Wageningen University, Wageningen, NL

    Google Scholar 

  • de Roos APW et al (2011) Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. J Dairy Sci 94:1559–1567

    Article  Google Scholar 

  • de Vries W (2018) https://www.wur.nl/nl/nieuws/Het-kan-10-miljard-mensen-voeden-zonder-milieugrenzen-voor-de-aarde-te-overschrijden.htm

  • de Wolf K et al (2018) Verduurzaming samenwerking akkerbouw-veehouderij in Drenthe. WUR/Wageningen Plant Research, Rapport WPR-773

    Google Scholar 

  • Devries A (2013) Cow longevity economics: the cost benefit of keeping the cow in the herd. In: Proceedings from the Cow Longevity Conference 2013, Hamra farm, Sweden

    Google Scholar 

  • Dybzinski R et al (2008) Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia 158: 85. https://doi.org/10.1007/s00442-008-1123-x

  • Eggen A (2012) The development and application of genomic selection as a new breeding paradigm. Animal Front 2(1):10–15

    Article  Google Scholar 

  • Ellis JL et al (2007) Prediction of methane production from dairy and beef cattle. J Dairy Sci 90(7):3456–3466

    Article  Google Scholar 

  • Enyi BAC (2008) Effects of intercropping maize or sorghum with cowpeas, pigeon peas or beans. Faculty of Agriculture, Morogoro, W., Tanzania. Experimental Agriculture 9(1):83–90

    Google Scholar 

  • Fangou M et al (2016) Simulating potential growth in a relay-strip intercropping system: model description, calibration and testing. Centre for Crop Systems Analysis. Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Foley JA et al (2005) Global consequences of land use. Science 309(5734):570–574

    Google Scholar 

  • Gerber PJ et al (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organisation of the United Nations (FAO)

    Google Scholar 

  • González-Recio O et al (2007) Inbreeding depression on Female fertility and calving ease in Spanish dairy cattle. J Dairy Sci 90(12):5744–5752

    Article  Google Scholar 

  • Hayes BJ et al (2009) Genomic selection in dairy cattle: progress an challenges. J Dairy Sci 92(2):433–443

    Article  Google Scholar 

  • Holster H et al (2013) KringloopWijzer, goed geborgd!? Annual Nutrient Cycling Assessment (ANCA), adequately assured!? Rapport 676 Wageningen University and Research

    Google Scholar 

  • Jones-Walters LM (2018) https://www.wur.nl/nl/show-longread/Biodiversiteit-longread.htm

  • Kalantari F et al (2017) A review of vertical farming technology: a guide for implementation of building integrated agriculture in cities. In: Advanced Engineering Forum, vol. 24 pp 76–91

    Google Scholar 

  • Kardos M et al (2018) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:1

    Google Scholar 

  • Kosowska B (1992) The relationship between homozygosity level and animal physiology: iron content of plasma and whole blood as well as total iron binding capacity by transferrin (TIBC) in rats of various inbreeding coefficient. Biochem Genet 30(7/8)

    Google Scholar 

  • Leach K (2012) Assessing the sustainability of EU organic and low input dairy farms. ORC Bulletin Nr. 111-Winter 2012

    Google Scholar 

  • Lesschen JP (2018) https://www.wur.nl/nl/nieuws/Nutri2Cycle-naar-een-echte-kringloopeconomie.htm

  • Maeder P et al (2002) Soil fertility and biodiversity in organic farming. Science 296(5573):1694–1697

    Article  Google Scholar 

  • Meiresonne L, Turkelboom F (2014) Biodiversiteit als basis voor ecosysteemdiensten in Vlaanderen. INBO.M.2014.1817081. Instituut voor natuur—en bosonderzoek. Brussel

    Google Scholar 

  • Miguel A et al (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72(2):203–2011

    Article  Google Scholar 

  • Moe PW, Tyrrell HF (1979) Methane production in dairy cows. J Dairy Sci 62(10):1583–1586

    Article  Google Scholar 

  • Nardali ET (2009) No-till farming: effects on soil, pros and cons and potential. https://www.researchgate.net/publication/293211592_No-till_farming_Effects_on_soil_pros_and_cons_and_potential

  • Ngwira AR et al (2012) On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Res 132:149–157

    Article  Google Scholar 

  • Noorduyn L, Sukkel W (2010) Klimaatverandering te lijf. Ekoland 30 (2010)1. ISSN 0926-9142—pp 18–19

    Google Scholar 

  • Norman D et al (1997) Defining and implementing sustainable agriculture (Kansas Sustainable Agriculture Series, Paper #1; Manhattan KS: Kansas Agricultural Experiment Station

    Google Scholar 

  • Parr JF et al (1990) Sustainable agriculture in the United States. In: Edwards CA et al (eds) Sustainable agricultural systems. Soil and Water Conservation Society

    Google Scholar 

  • Reytar K et al (2014) Indicators for a sustainable agriculture: a scoping analysis. World Resources Institute (WRI)

    Google Scholar 

  • Schils R (2012) 30 vragen en antwoorden over bodemvruchtbaarheid. Wageningen Universitiy and Research, Alterra

    Google Scholar 

  • Scholten M et al (2018) Technische briefing kringlooplandbouw. Notitie voor de vaste kamer commissie LNV. Wageningen University and Research

    Google Scholar 

  • Smith LA et al (1998) The effects of inbreeding on the lifetime performance of dairy cattle. J Dairy Sci 81:2729–2737

    Article  Google Scholar 

  • Soerenson AC et al (2005) Inbreeding in Danish dairy cattle breeds. J Dairy Sci 88(5):1865–1872

    Article  Google Scholar 

  • Sonessen AK et al (2012) Genomic selection requires genomic control of inbreeding. Genet Sel Evol 44(1):27

    Article  Google Scholar 

  • Spears S (2018) https://regenerationinternational.org/2018/06/24/no-till-farming/ Advanced Engineering Forum Submitted: 2017-08-17, vol. 24, pp 76–91. ISSN: 2234-991X

  • Spitters CJT, Aerts R (1983) Simulation of competition for light and water in crop weed associations. Aspects Appl Biol 4:467–484

    Google Scholar 

  • Springmann M et al (2018) Options for keeping the food system within environmental limits. Nature 562:519–525

    Article  Google Scholar 

  • Spruijt-Verkerke et al (2004) Duurzaamheid op biologische bedrijven. Publicatie PPR 328, Wageningen University and Research

    Google Scholar 

  • Steinfeld H, Gerber P (2010) Livestock production and the global environment. Consume less or produce better? Proc Nat Acad Sci PNAS 107(43):18237–18238. https://doi.org/10.1073/pnas.1012541107

  • Su YZ et al (2006) Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China. Nutr Cycl Agroecosyst 75:285. https://doi.org/10.1007/s10705-006-9034-x

  • Sukkel W (2018) https://www.wur.nl/nl/show-longread/Biodiversiteit-longread.htm

  • Tilman D et al (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Google Scholar 

  • UDV (2018) http://www.uitvoeringsagendaduurzameveehouderij.nl/

  • Vanraden PM, Sanders AH (2003) Economic merit of crossbred and purebred US dairy cattle. J Dairy Sci 86(3):1036–1044

    Google Scholar 

  • Wall DH, Knox MA (2014) Soil Biodiversity. Reference Module in Earth Systems and Environmental Sciences, pp 136–141

    Google Scholar 

  • Willig MR, Presley SJ (2018) Latitudinal gradients of biodiversity: theory and empirical patterns. In: Encyclopedia of the anthropocene

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem van Laarhoven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Laarhoven, W. (2019). Innovating for Sustainable Agriculture. In: Krozer, Y., Narodoslawsky, M. (eds) Economics of Bioresources. Springer, Cham. https://doi.org/10.1007/978-3-030-14618-4_11

Download citation

Publish with us

Policies and ethics