Skip to main content

Abstract

In plants, differentiated somatic cells can revert their identity to pluripotent, reprogrammed cells in order to optimize growth and development depending on external conditions and in aid of overcoming their limitations as sessile organisms. Different modes of regeneration include tissue repair, de novo organogenesis and somatic embryogenesis (SE). The latter usually comprise the formation of proliferating pluripotent cell masses called callus. Identification and characterization of genes involved in the SE process allows the exploitation of distinctive features that make a tissue susceptible to change its normal cell fate and produce new plants massively.

Small RNAs (sRNAs) are non-coding RNA (ncRNA), 20–24 nucleotides long molecules involved in plant development, reproduction and genome reprogramming. Likely, the enormous variety of operating sRNA pathways contributes to the plant phenotypic plasticity. Two main sRNAs classes are defined by their modes of biogenesis: a class in which the precursor is a single-stranded, hairpin loop forming RNA (hpRNA), mainly represented by microRNAs (miRNAs) and a class in which the precursor is a dsRNA molecule (dsRNA) comprising several small interfering RNAs (siRNAs).

sRNAs, especially miRNAs, are common regulators of transcription factors (TFs) essential for plant meristem maintenance, growth and proliferation control, and with recently uncovered role in somatic to embryonic cell reprogramming. Although the siRNA function in plant development and SE has been much less explored, recent findings shape out their relevance in organ patterning and stress responses, both involved in cell plasticity. This review focuses on compiling and integrating the described function of miRNAs and siRNAs as a molecular basis in establishing cell dedifferentiation and further plant regeneration in economically relevant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

We acknowledge the financial support from PAPIIT IN214118, PAIP 5000-9118 and CONACYT 238439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzvetanka D. Dinkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Ruiz, B.A., Juárez-González, V.T., Luján-Soto, E., Dinkova, T.D. (2019). The Role of Small RNAs in Plant Somatic Embryogenesis. In: Alvarez-Venegas, R., De-la-Peña, C., Casas-Mollano, J. (eds) Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-14760-0_12

Download citation

Publish with us

Policies and ethics