Skip to main content

Information Gathering Planning with Hermite Spline Motion Primitives for Aerial Vehicles with Limited Time of Flight

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11472))

  • 1543 Accesses

Abstract

This paper focuses on motion planning for information gathering by Unmanned Aerial Vehicle (UAV) solved as Orienteering Problem (OP). The considered OP stands to find a path over subset of given target locations, each with associated reward, such that the collected reward is maximized within a limited time of flight. To fully utilize the motion range of the UAV, Hermite splines motion primitives are used to generate smooth trajectories. The minimal time of flight estimate for a given Hermite spline is calculated using known motion model of the UAV with limited maximum velocity and acceleration. The proposed Orienteering Problem with Hermite splines is introduced as Hermite Orienteering Problem (HOP) and its solution is based on Random Variable Neighborhood Search algorithm (RVNS). The proposed RVNS for HOP combines random combinatorial state space exploration and local continuous optimization for maximizing the collected reward. This approach was compared with state of the art solutions to the OP motivated by UAV applications and showed to be superior as the resulting trajectories reached better final rewards in all testing cases. The proposed method has been also successfully verified on a real UAV in information gathering task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A link to a video footage from all three experiments: https://www.youtube.com/watch?v=gagYFLpGVC4.

References

  1. Metacentrum by cesnet. https://metavo.metacentrum.cz. Accessed 1 July 2018

  2. Alena, O., Niels, A., James, C., Bruce, G., Erwin, P.: Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks 72(4), 411–458 (2018)

    Article  MathSciNet  Google Scholar 

  3. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  4. Baca, T., Loianno, G., Saska, M.: Embedded model predictive control of unmanned micro aerial vehicles. In: International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 992–997, August 2016

    Google Scholar 

  5. Balas, E., Toth, P.: Branch and bound methods for the traveling salesman problem. Technical report, Carnegie-Mellon University, January 1983

    Google Scholar 

  6. Boonporm, P.: Online geometric path planning algorithm of autonomous mobile robot in partially-known environment. Rom. Rev. Precis. Mech. Opt. Mechatron. 185–188 (2011)

    Google Scholar 

  7. Canis, B.: Unmanned Aircraft Systems (UAS): Commercial Outlook for a New Industry. Congressional Research Service Washington (2015)

    Google Scholar 

  8. Chao, I.M., Golden, B.L., Wasil, E.A.: A fast and effective heuristic for the orienteering problem. Eur. J. Oper. Res. 88(3), 475–489 (1996)

    Article  Google Scholar 

  9. Choi, J., Curry, R., Elkaim, G.: Path planning based on Bézier curve for autonomous ground vehicles. In: Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, pp. 158–166 (2008)

    Google Scholar 

  10. Deng, C., Wang, S., Huang, Z., Tan, Z., Liu, J.: Unmanned aerial vehicles for power line inspection: a cooperative way in platforms and communications. J. Commun. 9(9), 687–692 (2014)

    Article  Google Scholar 

  11. Doherty, P., Rudol, P.: A UAV search and rescue scenario with human body detection and geolocalization. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 1–13. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76928-6_1

    Chapter  Google Scholar 

  12. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  Google Scholar 

  13. Faigl, J., Pěnička, R., Best, G.: Self-organizing map-based solution for the orienteering problem with neighborhoods. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 1315–1321, October 2016

    Google Scholar 

  14. Faigl, J., Váňa, P.: Surveillance planning with Bézier curves. IEEE Robot. Autom. Lett. 3(2), 750–757 (2018)

    Article  Google Scholar 

  15. Goncalves, J.A., Henriques, R.: UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogram. Remote Sens. 104, 101–111 (2015)

    Article  Google Scholar 

  16. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016)

    Article  MathSciNet  Google Scholar 

  17. Hansen, P., Mladenovi, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)

    Article  MathSciNet  Google Scholar 

  18. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MathSciNet  Google Scholar 

  19. Hodicky, J.: Standards to support military autonomous system life cycle. In: Březina, T., Jabłoński, R. (eds.) MECHATRONICS 2017. AISC, vol. 644, pp. 671–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65960-2_83

    Chapter  Google Scholar 

  20. Lawler, E.L.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics (1985)

    Google Scholar 

  21. Lepetič, M., Klančar, G., Škrjanc, I., Matko, D., Potočnik, B.: Path planning and path tracking for nonholonomic robots. Mob. Robot.: New Res. 345–368 (2005)

    Google Scholar 

  22. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  Google Scholar 

  23. Lorenz, S., Adolf, F.M.: A decoupled approach for trajectory generation for an unmanned rotorcraft. In: Holzapfel, F., Theil, S. (eds.) Advances in Aerospace Guidance, Navigation and Control, pp. 3–14. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19817-5_1

    Chapter  Google Scholar 

  24. Morgenthal, G., Hallermann, N.: Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures. Adv. Struct. Eng. 17(3), 289–302 (2014)

    Article  Google Scholar 

  25. Oberlin, P., Rathinam, S., Darbha, S.: Today’s traveling salesman problem. Robot. Autom. Mag. 17(4), 70–77 (2010)

    Article  Google Scholar 

  26. Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogram. Eng. Remote Sens. 81(4), 281–329 (2015)

    Article  Google Scholar 

  27. Perks, M.T., Russell, A.J., Large, A.R.: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs). Hydrol. Earth Syst. Sci. 20(10), 4005–4015 (2016)

    Article  Google Scholar 

  28. Pěnička, R., Faigl, J., Vana, P., Saska, M.: Dubins orienteering problem. IEEE Robot. Autom. Lett. 2(2), 1210–1217 (2017)

    Article  Google Scholar 

  29. Pěnička, R., Faigl, J., Váňa, P., Saska, M.: Dubins orienteering problem with neighborhoods. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1555–1562, June 2017

    Google Scholar 

  30. Quater, P.B., Grimaccia, F., Leva, S., Mussetta, M., Aghaei, M.: Light unmanned aerial vehicles (UAVs) for cooperative inspection of PV plants. IEEE J. Photovoltaics 4(4), 1107–1113 (2014)

    Article  Google Scholar 

  31. Quigley, M., Goodrich, M., Griffiths, S., Eldredge, A., Beard, R.: Target acquisition, localization, and surveillance using a fixed-wing mini-UAV and gimbaled camera. Robotics and Automation, April 2005

    Google Scholar 

  32. Ramesh, R., Brown, K.M.: An efficient four-phase heuristic for the generalized orienteering problem. Comput. Oper. Res. 18(2), 151–165 (1991)

    Article  MathSciNet  Google Scholar 

  33. Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: leading methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 411–427 (2011)

    Article  MathSciNet  Google Scholar 

  34. Russell, S., Norvig, P.: Artificial intelligence: a modern approach. Artif. Intell. 25(27), 79–80 (1995)

    MATH  Google Scholar 

  35. Saari, H., et al.: Unmanned aerial vehicle (UAV) operated spectral camera system for forest and agriculture applications. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology, vol. 13, October 2011

    Google Scholar 

  36. Salkin, H.M., Kluyver, C.A.D.: The knapsack problem: a survey. Naval Res. Logistics Q. 22(1), 127–144 (1975)

    Article  MathSciNet  Google Scholar 

  37. Saska, M., Langr, J., Preucil, L.: Plume tracking by a self-stabilized group of micro aerial vehicles. In: Hodicky, J. (ed.) Modelling and Simulation for Autonomous Systems Modelling and Simulation for Autonomous Systems, vol. 8906, pp. 44–55. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13823-7_5

    Chapter  Google Scholar 

  38. Schopferer, S., Adolf, F.M.: Rapid trajectory time reduction for unmanned rotorcraft navigating in unknown terrain. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 305–316, May 2014

    Google Scholar 

  39. Sevkli, Z., Sevilgen, F.E.: Variable neighborhood search for the orienteering problem. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 134–143. Springer, Heidelberg (2006). https://doi.org/10.1007/11902140_16

    Chapter  Google Scholar 

  40. Sprunk, C.: Planning motion trajectories for mobile robots using splines. University of Freiburg, Student project (2008)

    Google Scholar 

  41. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9), 797–809 (1984)

    Article  Google Scholar 

  42. Váňa, P., Faigl, J.: On the dubins traveling salesman problem with neighborhoods. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4029–4034 (2015)

    Google Scholar 

  43. Wagner, P., Kotzian, J., Kordas, J., Michna, V.: Path planning and tracking for robots based on cubic Hermite splines in real-time. In: 2010 IEEE 15th Conference on Emerging Technologies Factory Automation (ETFA 2010), pp. 1–8, September 2010

    Google Scholar 

  44. Yang, G.J., Delgado, R., Choi, B.W.: A practical joint-space trajectory generation method based on convolution in real-time control. Int. J. Adv. Robot. Syst. 13(2), 56 (2016)

    Article  Google Scholar 

  45. Yuan, C., Zhang, Y., Liu, Z.: A survey on technologies for automatic forest re monitoring, detection, and ghting using unmanned aerial vehicles and remote sensing techniques. Can. J. For. Res. 45(7), 783–792 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

The presented work has been supported by the Czech Science Foundation (GAČR) under research project No. 17-16900Y and by OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”. Access to computing and storage facilities of the National Grid Infrastructure MetaCentrum, provided under the programme CESNET LM2015042, is greatly appreciated. The support of the Grant Agency of the Czech Technical University in Prague under grant No. SGS17/187/OHK3/3T/13 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dubeň .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubeň, A., Pěnička, R., Saska, M. (2019). Information Gathering Planning with Hermite Spline Motion Primitives for Aerial Vehicles with Limited Time of Flight. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14984-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14983-3

  • Online ISBN: 978-3-030-14984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics