Skip to main content

Mathematical Background

  • Chapter
  • First Online:
Formation Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 205))

  • 1171 Accesses

Abstract

The theory of formation control of distributed agents is developed on the base of mathematical concepts from graph theory. Specifically, algebraic graph theory and graph rigidity theory are two main mathematical backgrounds. But the graph theory acts as a basic topological setup; so to add a control flavor into these theories, we also need to have some background from nonlinear control theory along with consensus dynamics. This chapter provides essential mathematical background that can be used for the developments of distributed formation control theory. The detailed topics included in this chapter are basic concepts in graph theory, rigidity theory (distance rigidity, persistence, bearing rigidity, and weak rigidity), key results in consensus, and basics of nonlinear control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnarsson, G., Greenlaw, R.: Graph Theory: Modeling, Applications, and Algorithms. Pearson Education International, Upper Saddle River (2007)

    Google Scholar 

  2. Anderson, B.D.O., Yu, C., Fidan, B., Hendrickx, J.M.: Rigid graph control architectures for autonomous formations. IEEE Control Syst. Mag. 28(6), 48–63 (2008)

    Google Scholar 

  3. Angeli, D.: An almost global notion of input to state stability. IEEE Trans. Autom. Control 49(6), 866–874 (2004)

    Google Scholar 

  4. Angeli, D., Praly, L.: Stability robustness in the presence of exponentially unstable isolated equilibria. IEEE Trans. Autom. Control 56(7), 1582–1592 (2011)

    Google Scholar 

  5. Aspnes, J., Eren, T., Goldenberg, D.K., Morse, A.S., Whiteley, W., Yang, Y.R., Anderson, B.D.O., Belhumeur, P.N.: A theory of network localization. IEEE Trans. Mob. Comput. 5(12), 1663–1678 (2006)

    Google Scholar 

  6. Beineke, L.W., Wilson, R.J.: Topics in Algebraic Graph Theory. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  7. Berg, A.R., Jordán, T.: A proof of Connelly’s conjecture on \(3\)-connected circuits of the rigidity matroid. J. Comb. Theory Ser. B 88, 77–97 (2003)

    Google Scholar 

  8. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Google Scholar 

  9. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974)

    Google Scholar 

  10. Bishop, A.N., Shames, I., Anderson, B.D.O.: Stabilization of rigid formations with direction-only constraints. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, pp. 746–752 (2011)

    Google Scholar 

  11. Chartrand, G., Zhang, P.: Introduction to Graph Theory. McGraw-Hill, New York City (2005)

    Google Scholar 

  12. Cortes, J.: Finite-time convergent gradient flows with applications to network consensus. Automatica 42(11), 1993–2000 (2006)

    Google Scholar 

  13. Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Eren, T., Whiteley, W., Morse, A.S., Belhumeur, P.N., Anderson, B.D.O.: Sensor and network topologies of formations with direction, bearing, and angle information between agents. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 3064–3069 (2003)

    Google Scholar 

  15. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. American Mathematical Society, Providence (1993)

    Google Scholar 

  16. Haddad, W.M., Sadikhov, T.: Dissipative differential inclusions, set-valued energy storage and supply rate maps, and stability of discontinuous feedback systems. Nonlinear Analysis: Hybrid Systems, pp. 83–108 (2013)

    Google Scholar 

  17. Haimo, V.T.: Finite time controllers. SIAM J. Control Optim. 24(4), 760–770 (1986)

    Google Scholar 

  18. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)

    Google Scholar 

  19. Hendrickx, J.M., Anderson, B.D.O., Delvenne, J.-C., Blondel, V.D.: Directed graphs for the analysis of rigidity and persistence in autonomous agent systems. Int. J. Robust Nonlinear Control 17(10–11), 960–981 (2007)

    Google Scholar 

  20. Hendrickx, J.M., Fidan, B., Yu, C., Anderson, B.D.O., Blondel, V.D.: Formation reorganization by primitive operations on directed graphs. IEEE Trans. Autom. Control 53(4), 968–979 (2008)

    Google Scholar 

  21. Heuser, H.G.: Functional Analysis. Wiley, New York (1982)

    Google Scholar 

  22. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. J. Comb. Theory Ser. B 94(1), 1–29 (2005)

    Google Scholar 

  23. Jing, G., Zhang, G., Lee, H.W.J., Wang, L.: Weak rigidity theory and its application to multi-agent formation stabilization, pp. 1–26. arXiv:1804.02795 [cs.SY]

  24. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  25. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    Google Scholar 

  26. Kwon, S.-H., Trinh, M.H., Oh, K.-H., Zhao, S., Ahn, H.-S.: Infinitesimal weak rigidity, formation control of three agents, and extension to \(3\)-dimensional space, pp. 1–12. arXiv:1803.09545

  27. Kwon, S.-H., Trinh, M.H., Oh, K.-H., Zhao, S., Ahn, H.-S.: Infinitesimal weak rigidity and stability analysis on three-agent formations. In: Proceedings of the SICE Annual Conference, pp. 266–271 (2018)

    Google Scholar 

  28. Laman, G.: On graphs and the rigidity of plane skeletal structuress. J. Eng. Math. 4(4), 331–340 (1970)

    Google Scholar 

  29. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

    Google Scholar 

  30. Naylor, A.W., Sell, G.R.: Linear Operator Theory in Engineering and Science. Springer, New York (1982)

    Google Scholar 

  31. Park, M.-C., Kim, H.-K., Ahn, H.-S.: Rigidity of distance-based formations with additional subtended-angle constraints. In: Proceedings of the International Conference on Control, Automation and Systems, pp. 111–116 (2017)

    Google Scholar 

  32. Roth, B.: Rigid and flexible frameworks. Am. Math. Mon. 88(1), 6–21 (1981)

    Google Scholar 

  33. Saber, R.O., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Google Scholar 

  34. Schröder, B.S.W.: Mathematical Analysis - A Concise Introduction. Wiley, New York (2008)

    Google Scholar 

  35. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall International Inc., Upper Saddle River (2008)

    Google Scholar 

  36. Summers, T.H., Yu, C., Dasgupta, S., Anderson, B.D.O.: Control of minimally persistent leader-remote-follower and coleader formations in the plane. IEEE Trans. Autom. Control 56(12), 2778–2792 (2011)

    Google Scholar 

  37. Trinh, M.-H., Park, M.-C., Sun, Z., Anderson, B.D.O., Pham, V.H., Ahn, H.-S.: Further analysis on graph rigidity. In: Proceedings of the 55th IEEE Conference on Decision and Control, pp. 922–927 (2016)

    Google Scholar 

  38. Yu, C., Hendrickx, J.M., Fidan, B., Anderson, B.D.O., Blondel, V.D.: Three and higher dimensional autonomous formations: rigidity, persistence and structural persistence. Automatica 43(3), 387–402 (2007)

    Google Scholar 

  39. Zelazo, D., Franchi, A., Bülthoff, H.H., Giordano, P.R.: Decentralized rigidity maintenance control with range measurements for multi-robot systems. Int. J. Robot. Res. 34(1), 105–128 (2015)

    Google Scholar 

  40. Zelazo, D., Franchi, A., Giordano, P.R.: Rigidity theory in SE(2) for unscaled relative position estimation using only bearing measurements. In: Proceedings of the European Control Conference, pp. 2703–2708 (2014)

    Google Scholar 

  41. Zhao, S., Zelazo, D.: Bearing rigidity and almost global bearing-only formation stabilization. IEEE Trans. Autom. Control 61(5), 1255–1268 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo-Sung Ahn .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahn, HS. (2020). Mathematical Background. In: Formation Control. Studies in Systems, Decision and Control, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-030-15187-4_2

Download citation

Publish with us

Policies and ethics