Skip to main content

Fuzzy Integrals

  • Chapter
  • First Online:
Discrete Fuzzy Measures

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 382))

  • 406 Accesses

Abstract

While the Choquet and Sugeno integrals are the most widely adopted when it comes to applying fuzzy measures for aggregation, there are a number of alternative approaches to integration with respect to measures that may not be necessarily additive. This chapter gives an overview of some of the main types proposed along with their properties, semantic interpretations and generalisations. For each of the integrals presented, we outline important considerations for computation and provide examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Two vectors \(\mathbf {x}, \mathbf {y} \in {\mathbb R}^n\) are called comonotone if there exists a common permutation P of \(\{1,2,\ldots ,n\}\), such that \(x_{P(1)}\leqslant x_{P(2)} \leqslant \cdots \leqslant x_{P(n)}\) and \(y_{P(1)}\leqslant y_{P(2)} \leqslant \cdots \leqslant y_{P(n)}\). Equivalently, this condition is frequently expressed as \((x_i-x_j)(y_i-y_j)\geqslant 0\) for all \(i,j \in \{1,\ldots ,n\}\).

  2. 2.

    As a consequence, this property holds for a linear convex combination of any number of fuzzy measures.

  3. 3.

    See footnote 1 on p. 94.

  4. 4.

    With respect to a measure m, an integral was sought satisfying:

    (S1) \(\int (\mathbf 1 | \mathcal A) \ \mathrm d m = m(\mathcal A),\) where \((\mathbf 1 | \mathcal A)\) represents the constant function 1 restricted to the set \(\mathcal A\), e.g. in the discrete case if \(n = 3\) and \(\mathcal A = \{2,3\}\) then \((\mathbf 1 | \mathcal A)=(0,1,1)\). In other words, integrating over the characteristic function of a set \(\mathcal A\) returns the measure of \(\mathcal A\);

    (S2) \(\int c f \ \mathrm d m = c \int f \ \mathrm d m, c \geqslant 0\), homogeneity with respect to a multiplying constant;

    (S3) \(\int \bigcup \limits _{n=1}^\infty f_n \ \mathrm d m= \bigcup \limits _{n=1}^\infty \int f_n \ \mathrm d m\), consistency in terms of integrating over sequences of functions \(f_n\) that converge to f; the notation of \(\cup \) here denotes both lowest upper bound and union.

  5. 5.

    For example, with the Lebesgue measure it holds that \(L(0.3,0) + L(0,0.5) = L(0.3,0.5)\) (vertical partition) and also that \(L(0.3,0.3) + L(0,0.2) = L(0.3,0.5)\) (horizontal partition).

    For the Shilkret integral, if the measure is maxitive, it holds that \(\max \{ Sh(0.3,0),Sh(0,0.5) \} = Sh(0.3,0.5)\) (vertical partition) and also that \(\max \{Sh(0.3,0.3), Sh(0,0.5)\} = Sh(0.3,0.5)\) (horizontal partition).

  6. 6.

    In the more general case, the Pan integral is usually defined using \(\sup \) and \(\inf \) with conditions on the operations ensuring closure and other properties. We do not require these in the discrete case.

  7. 7.

    A function UI on \([0,\infty ]\) is called a universal integral with respect to a measure m if the following axioms hold [KMP10]:

    (I1) The function is nondecreasing with respect to the measure m and with respect to the input function f;

    (I2) There exists a pseudo-multiplication \(\otimes : [0,\infty ]^2 \rightarrow [0,\infty ]\) such that \(UI_m(\mathbf c |\mathcal A) = c\cdot m(\mathcal A)\) where \(\mathbf c|\mathcal A\) denotes the constant function c restricted to the set \(\mathcal A\), e.g. in the discrete case if \(n=3\) and \(\mathcal A = \{2,3\}\) then \(\mathbf c|\mathcal A = (0,c,c)\);

    (I3) For all integral equivalent pairs \((m_1, f_1), (m_2,f_2)\) we have \(UI_{m_1}(f_1) = UI_{m_2}(f_2) \).

References

  1. Aitken, A.C.: A problem in combinations. Math. Notes 28, 18–23 (1933)

    Article  Google Scholar 

  2. Beliakov, G.: A new type of fuzzy integrals for decision making based on bivariate symmetric means. Int. J. Intell. Syst. 33, 1660–1671 (2018)

    Article  Google Scholar 

  3. Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Springer, Berlin (2016)

    Book  Google Scholar 

  4. Beliakov, G., Dujmovic, J.J.: Extension of bivariate means to weighted means of several arguments by using binary trees. Inf. Sci. 331, 137–147 (2016)

    Article  MathSciNet  Google Scholar 

  5. Beliakov, G., James, S.: Citation-based journal ranks: the use of fuzzy measures. Fuzzy Sets Syst. 167, 101–119 (2011)

    Article  MathSciNet  Google Scholar 

  6. Borwein, J.M., Borwein, P.B.: PI and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley, New York (1987)

    MATH  Google Scholar 

  7. Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer, Dordrecht (2003)

    Book  Google Scholar 

  8. Calvo, T., Beliakov, G.: Aggregation functions based on penalties. Fuzzy Sets Syst. 161(10), 1420–1436 (2010)

    Article  MathSciNet  Google Scholar 

  9. Calvo, T., Mesiar, R., Yager, R.R.: Quantitative weights and aggregation. IEEE Trans. Fuzzy Syst. 12, 62–69 (2004)

    Article  Google Scholar 

  10. Chen, T., Chang, H., Tzeng, G.: Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy. Eur. J. Oper. Res. 137, 145–161 (2002)

    Article  Google Scholar 

  11. Choquet, G.: Theory of capacities. Ann. l’Institut Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  12. Denneberg, D.: Non-additive Measure and Integral. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  13. Dimuro, G.P., et al.: Generalized \(C_{F1,F2}\)-integrals: from Choquet-like aggregation to ordered directionally monotone functions. Fuzzy Sets Syst. (2018) (submitted)

    Google Scholar 

  14. Dubois, D., Prade, H.: Semantics of quotient operators in fuzzy relational databases. Fuzzy Sets Syst. 78(1), 89–93 (1996)

    Article  MathSciNet  Google Scholar 

  15. Dubois, D., Prade, H., Testemale, C.: Weighted fuzzy pattern matching. Fuzzy Sets Syst. 28, 313–331 (1988)

    Article  MathSciNet  Google Scholar 

  16. Dujmovic, J.J.: Two integrals related to means. In: Journal of the University of Belgrade EE Department, Series Mathematics and Physics, vol. 412–460, pp. 231–232 (1973)

    Google Scholar 

  17. Dujmovic, J.J.: Weighted conjunctive and disjunctive means and their application in system evaluation. In: Journal of the University of Belgrade EE Department, Series Mathematics and Physics, vol. 483, pp. 147–158 (1974)

    Google Scholar 

  18. Dujmovic, J.J., Beliakov, G.: Idempotent weighted aggregation based on binary aggregation trees. Int. J. Intell. Syst. 32, 31–50 (2017)

    Article  Google Scholar 

  19. Even, Y., Lehrer, E.: Decomposition-integral: unifying Choquet and the concave integrals. Econ. Theory 56, 33–58 (2014)

    Article  MathSciNet  Google Scholar 

  20. Fernández Salido, J.M., Murakami, S.: Extending Yager’s orness concept for the OWA aggregators to other mean operators. Fuzzy Sets Syst. 139, 515–542 (2003)

    Google Scholar 

  21. Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  22. Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Springer, Berlin (2016)

    Book  Google Scholar 

  23. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: applications of the Kappalab R package. Eur. J. Oper. Res. 186(2), 766–785 (2008)

    Article  MathSciNet  Google Scholar 

  24. Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals. Theory and Applications. Physica-Verlag, Heidelberg (2000)

    MATH  Google Scholar 

  25. Honda, A., James, S.: Averaging aggregation functions based on inclusion-exclusion integrals. In: Proceedings of the Joint World Congress of International Fuzzy Systems Association and International Conference on Soft Computing and Intelligent Systems, Otsu, Japan, pp. 1–6 (2017)

    Google Scholar 

  26. Honda, A., James, S., Rajasegarar, S.: Orness and cardinality indices for averaging inclusion-exclusion integrals. In: 14th International Conference on Modeling Decisions for Artificial Intelligence, MDAI2017, Kitakyushu, Japan, pp. 51–62 (2017)

    Google Scholar 

  27. Honda, A., Okazaki, Y.: Inclusion-exclusion integral and t-norm based data analysis model construction. In: Proceedings of IPMU, Eindhoven, Netherlands, pp. 1–13 (2016)

    Google Scholar 

  28. Honda, A., Okazaki, Y.: Theory of inclusion-exclusion integral. Inf. Sci. 376, 136–147 (2017)

    Article  Google Scholar 

  29. Ichihashi, H., Tanaka, H., Asai, K.: Fuzzy integrals based on pseudo-additions and multiplications. J. Math. Anal. Appl. 130, 354–364 (1988)

    Article  MathSciNet  Google Scholar 

  30. Keun-Chang, K., Pedrycz, W.: Face recognition: a study in information fusion using fuzzy integral. Pattern Recognit. Lett. 26, 719–733 (2005)

    Article  Google Scholar 

  31. Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno Integral. IEEE Trans. Fuzzy Syst. 18, 178–187 (2010)

    Article  Google Scholar 

  32. Lehrer, E.: A new integral for capacities. Econ. Theory 39, 157–176 (2009)

    Article  MathSciNet  Google Scholar 

  33. Liginlal, D., Ow, T.: On policy capturing with fuzzy measures. Eur. J. Oper. Res. 167, 461–474 (2005)

    Article  Google Scholar 

  34. Liginlal, D., Ow, T.: Modeling attitude to risk in human decision processes: an application of fuzzy measures. Fuzzy Sets Syst. 157, 3040–3054 (2006)

    Article  MathSciNet  Google Scholar 

  35. Lucca, G., et al.: CC-integrals: Choquet-like Copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl.-Based Syst. 119, 32–43 (2017)

    Article  Google Scholar 

  36. Lucca, G., et al.: \(C_{F}\)-integrals: a new family of pre-aggregation functions with application to fuzzy rule-based classification systems. Inf. Sci. 435, 94–110 (2018)

    Google Scholar 

  37. Lucca, G., et al.: Improving the performance of fuzzy rule-based classification systems based on a non-averaging generalization of CC-integrals named \(C_{F1,F2}\)-integrals. IEEE Trans. Fuzzy Syst. (2018) (accepted)

    Google Scholar 

  38. Marichal, J.-L.: On Choquet and Sugeno integrals as aggregation functions. In: Grabisch, M., Murofushi, T., Sugeno, M. (eds.) Fuzzy Measures and Integrals. Theory and Applications, pp. 247–272. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  39. Marichal, J.-L.: Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. Eur. J. Oper. Res. 155, 771–791 (2004)

    Article  MathSciNet  Google Scholar 

  40. Matkowski, J.: A mean-value theorem and its applications. J. Math. Anal. Appl. 373, 227–234 (2011)

    Article  MathSciNet  Google Scholar 

  41. Mesiar, R.: Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488 (1995)

    Article  MathSciNet  Google Scholar 

  42. Mesiar, R., Kolesárová, A., Bustince, H., Dimuro, G.P., Bedregal, B.C.: Fusion functions based discrete Choquet-like integrals. Eur. J. Oper. Res. 252, 601–609 (2016)

    Google Scholar 

  43. Mesiar, R., Li, J., Ouyang, Y.: On the equality of integrals. Inf. Sci. 393, 82–90 (2017)

    Article  Google Scholar 

  44. Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approx. Reason. 54, 357–364 (2013)

    Article  MathSciNet  Google Scholar 

  45. Mesiar, R., Rybárik, J.: Pan-operations structure. Fuzzy Sets Syst. 74, 365–369 (1995)

    Google Scholar 

  46. Mesiar, R., Strupanová, A.: Decomposition integrals. Int. J. Approx. Reason. 54, 1252–1259 (2013)

    Google Scholar 

  47. Mesiar, R., Vivona, D.: Two-step integral with respect to fuzzy measure. Tatra Mt. Math. Publ. 16, 359–368 (1999)

    MathSciNet  MATH  Google Scholar 

  48. Narukawa, Y., Torra, V.: Fuzzy measure and probability distributions: distorted probabilities. IEEE Trans. Fuzzy Syst. 13, 617–629 (2005)

    Article  Google Scholar 

  49. Narukawa, Y., Torra, V.: Fuzzy measures and integrals in evaluation of strategies. Inf. Sci. 177, 4686–4695 (2007)

    Article  MathSciNet  Google Scholar 

  50. Ochoa, G., Lizasoain, I., Paternain, D., Bustince, H., Pal, N.R.: From quantitative to qualitative orness for lattice OWA operators. Int. J. Gen. Syst. 46(6), 640–669 (2017)

    Article  MathSciNet  Google Scholar 

  51. Rico, A., Strauss, O., Mariano-Goulart, D.: Choquet integrals as projection operators for quantified tomographic reconstruction. Fuzzy Sets Syst. 160, 198–211 (2009)

    Article  MathSciNet  Google Scholar 

  52. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97, 255–261 (1986)

    Article  MathSciNet  Google Scholar 

  53. Shilkret, N.: Maxitive measure and integration. Indag. Math. (Proc.) 74, 109–116 (1971)

    Article  MathSciNet  Google Scholar 

  54. Sugeno, M.: Theory of fuzzy integrals and applications. Ph.D. thesis. Tokyo Institute of Technology (1974)

    Google Scholar 

  55. Sugeno, M., Fujimoto, K., Murofushi, T.: A hierarchical decomposition of Choquet integral model. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 3(1), 1–15 (1995)

    Article  MathSciNet  Google Scholar 

  56. Uğuza, H., Arslan, A., Saraçoğlu, R., Türkoğlu, \(\dot{\rm I}\).: Detection of heart valve diseases by using fuzzy discrete hidden Markov model. Expert Syst. Appl. 34, 2799–2811 (2008)

    Google Scholar 

  57. Vitali, G.: On the definition of integral of functions of one variable. Rivista di matematica per le scienze economiche e sociali 20(2) (1997). Originally published in Italian in 1925, pp. 159–168

    Google Scholar 

  58. Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer, New York (2009)

    Book  Google Scholar 

  59. Wang, Z., Leung, K.-S., Wong, M.-L., Fang, J.: A new type of nonlinear integrals and the computation algorithm. Fuzzy Sets Syst. 112, 223–231 (2000)

    Article  Google Scholar 

  60. Wang, Z., Xu, K.: A brief discussion of a new type of nonlinear integrals with respect to nonadditive set functions. In: Proceedings of 1998 Conference of the Chinese Fuzzy Mathematics and Fuzzy Systems Association, pp. 95–103 (1998)

    Google Scholar 

  61. Wu, J.-Z., Beliakov, G.: Marginal contribution representation of capacity based multicriteria decision making. In: Under Review (2018)

    Google Scholar 

  62. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

    Article  Google Scholar 

  63. Yager, R.R.: Generalized OWA aggregation operators. Fuzzy Optim. Decis. Mak. 3, 93–107 (2004)

    Google Scholar 

  64. Yang, Q.: The Pan-integral on fuzzy measure space. Fuzzy Math. 3, 107–114 (1985)

    MathSciNet  MATH  Google Scholar 

  65. Yang, R., Wang, Z., Heng, P., Leung, K.: Fuzzified Choquet integral with a fuzzy-valued integrand and its application on temperature prediction. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(2), 367–380 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Beliakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beliakov, G., James, S., Wu, JZ. (2020). Fuzzy Integrals. In: Discrete Fuzzy Measures. Studies in Fuzziness and Soft Computing, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-030-15305-2_5

Download citation

Publish with us

Policies and ethics