Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 769 Accesses

Abstract

Equations of state suitable for modeling compression of solids under the hydrodynamic assumption are presented. Specifically derived are reductions of the Lagrangian, Eulerian, and logarithmic theories developed in the prior three chapters to cases wherein deviatoric stress can be ignored. In such cases, scalar equations of state are obtained that relate pressure, volume, and temperature or entropy. Model predictions are compared with planar shock data for finite compression of ductile metals, demonstrating suitability of the hydrodynamic approximation as well as superiority of the Eulerian equation of state, which is equivalent to that of Birch and Murnaghan. The logarithmic equation of state is found suitable for modeling hydrostatic compression of several less ductile polycrystalline minerals. This chapter concludes with an overall assessment of the three thermoelastic formulations, where the Eulerian model is deemed preferable for ductile solids with a relatively low ratio of shear to bulk modulus and the logarithmic model for brittle solids with a higher ratio of shear to bulk modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)

    Article  ADS  Google Scholar 

  2. Chen, X.Q., Niu, H., Li, D., Li, Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275–1281 (2011)

    Article  Google Scholar 

  3. Clayton, J.: Modeling nonlinear electromechanical behavior of shocked silicon carbide. J. Appl. Phys. 107, 013520 (2010)

    Article  ADS  Google Scholar 

  4. Clayton, J.: A nonlinear thermomechanical model of spinel ceramics applied to aluminum oxynitride (AlON). J. Appl. Mech. 78, 011013 (2011)

    Article  ADS  Google Scholar 

  5. Clayton, J.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    Book  Google Scholar 

  6. Clayton, J.: Nonlinear Eulerian thermoelasticity for anisotropic crystals. J. Mech. Phys. Solids 61, 1983–2014 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Clayton, J.: Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory. Int. J. Eng. Sci. 79, 1–20 (2014)

    Article  MathSciNet  Google Scholar 

  8. Clayton, J.: Shock compression of metal crystals: a comparison of Eulerian and Lagrangian elastic-plastic theories. Int. J. Appl. Mech. 6, 1450048 (2014)

    Article  Google Scholar 

  9. Clayton, J.: Crystal thermoelasticity at extreme loading rates and pressures: analysis of higher-order energy potentials. Extreme Mech. Lett. 3, 113–122 (2015)

    Article  Google Scholar 

  10. Clayton, J., Bammann, D.: Finite deformations and internal forces in elastic-plastic crystals: interpretations from nonlinear elasticity and anharmonic lattice statics. J. Eng. Mater. Technol. 131, 041201 (2009)

    Article  Google Scholar 

  11. Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves. Interscience, New York (1948)

    MATH  Google Scholar 

  12. Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. Germain, P., Lee, E.: On shock waves in elastic-plastic solids. J. Mech. Phys. Solids 21, 359–382 (1973)

    Article  ADS  Google Scholar 

  14. Gieske, J., Barsch, G.: Pressure dependence of the elastic constants of single crystalline aluminum oxide. Phys. Status Solidi B 29, 121–131 (1968)

    Article  ADS  Google Scholar 

  15. Gilman, J.: Electronic Basis of the Strength of Materials. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  16. Godwal, B., Sikka, S., Chidambaram, R.: Equation of state theories of condensed matter up to about 10 TPa. Phys. Rep. 102, 121–197 (1983)

    Article  ADS  Google Scholar 

  17. Greene, R., Luo, H., Ruoff, A.: Al as a simple solid: High pressure study to 220 GPa (2.2 Mbar). Phys. Rev. Lett. 73, 2075–2078 (1994)

    Article  ADS  Google Scholar 

  18. Guinan, M., Steinberg, D.: Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 35, 1501–1512 (1974)

    Article  ADS  Google Scholar 

  19. Hart, H., Drickamer, H.: Effect of high pressure on the lattice parameters of Al2O3. J. Chem. Phys. 43, 2265–2266 (1965)

    Article  ADS  Google Scholar 

  20. Jeanloz, R.: Shock wave equation of state and finite strain theory. J. Geophys. Res. 94, 5873–5886 (1989)

    Article  ADS  Google Scholar 

  21. Johnson, J.: Wave velocities in shock-compressed cubic and hexagonal single crystals above the elastic limit. J. Phys. Chem. Solids 43, 609–616 (1974)

    Article  ADS  Google Scholar 

  22. Kimizuka, H., Ogata, S., Li, J., Shibutani, Y.: Complete set of elastic constants of α-quartz at high pressure: a first-principles study. Phys. Rev. B 75, 054109 (2007)

    Article  ADS  Google Scholar 

  23. Mao, H., Bell, P., Shaner, J., Steinberg, D.: Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276–3283 (1978)

    Article  ADS  Google Scholar 

  24. McQueen, R., Marsh, S.: Equation of state for nineteen metallic elements from shock-wave measurements to two megabars. J. Appl. Phys. 31, 1253–1269 (1960)

    Article  ADS  Google Scholar 

  25. McSkimin, H., Andreatch, P.: Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. 43, 2944–2948 (1972)

    Article  ADS  Google Scholar 

  26. McSkimin, H., Andreatch, P., Thurston, R.: Elastic moduli of quartz versus hydrostatic pressure at 25∘ and − 195.8∘C. J. Appl. Phys. 36, 1624–1632 (1965)

    Article  ADS  Google Scholar 

  27. Murnaghan, F.: Finite deformations of an elastic solid. Am. J. Math. 59, 235–260 (1937)

    Article  MathSciNet  Google Scholar 

  28. Murnaghan, F.: Finite Deformation of an Elastic Solid. Wiley, New York (1951)

    MATH  Google Scholar 

  29. Occelli, F., Loubeyre, P., LeToullec, R.: Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater. 2, 151–154 (2003)

    Article  ADS  Google Scholar 

  30. Poirier, J.P., Tarantola, A.: A logarithmic equation of state. Phys. Earth Planet. Inter. 109, 1–8 (1998)

    Article  ADS  Google Scholar 

  31. Pugh, S.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)

    Article  Google Scholar 

  32. Segletes, S., Walters, W.: On theories of the Grüneisen parameter. J. Phys. Chem. Solids 59, 425–433 (1998)

    Article  ADS  Google Scholar 

  33. Thurston, R.: Waves in solids. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VI, pp. 109–308. Springer, Berlin (1974)

    Google Scholar 

  34. Vinet, P., Rose, J., Ferrante, J., Smith, J.: Universal features of the equation of state of solids. J. Phys. Condens. Matter 1, 1941–1964 (1989)

    Article  ADS  Google Scholar 

  35. Wallace, D.: Thermodynamics of Crystals. Wiley, New York (1972)

    Book  Google Scholar 

  36. Wallace, D.: Statistical Physics of Crystals and Liquids: a Guide to Highly Accurate Equations of State. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  37. Walsh, J., Christian, R.: Equation of state of metals from shock wave measurements. Phys. Rev. 97, 1544–1556 (1955)

    Article  ADS  Google Scholar 

  38. Walsh, J., Rice, M., McQueen, R., Yarger, F.: Shock-wave compressions of twenty-seven metals. equations of state of metals. Phys. Rev. 108, 196–216 (1957)

    Google Scholar 

  39. Warnes, R.: Shock wave compression of three polynuclear aromatic compounds. J. Chem. Phys. 53, 1088–1094 (1970)

    Article  ADS  Google Scholar 

  40. Wu, P., Wang, H., Neale, K.: On the large strain torsion of HCP polycrystals. Int. J. Appl. Mech. 4, 1250024 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clayton, J.D. (2019). Equations of State. In: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-15330-4_6

Download citation

Publish with us

Policies and ethics