Skip to main content

Hidden Treasures – Recycling Large-Scale Internet Measurements to Study the Internet’s Control Plane

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2019)

Abstract

Internet-wide scans are a common active measurement approach to study the Internet, e.g., studying security properties or protocol adoption. They involve probing large address ranges (IPv4 or parts of IPv6) for specific ports or protocols. Besides their primary use for probing (e.g., studying protocol adoption), we show that—at the same time—they provide valuable insights into the Internet control plane informed by ICMP responses to these probes—a currently unexplored secondary use. We collect one week of ICMP responses (637.50M messages) to several Internet-wide ZMap scans covering multiple TCP and UDP ports as well as DNS-based scans covering >50% of the domain name space. This perspective enables us to study the Internet’s control plane as a by-product of Internet measurements. We receive ICMP messages from \(\sim \)171M different IPs in roughly 53K different autonomous systems. Additionally, we uncover multiple control plane problems, e.g., we detect a plethora of outdated and misconfigured routers and uncover the presence of large-scale persistent routing loops in IPv4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please note that we do not have a fully IPv6-capable measurement infrastructure and thus focus on IPv4 only.

  2. 2.

    To reduce the capture size, our packet capture caps packets at 98 byte allowing no further investigation, we find 67% having the maximum capture size.

  3. 3.

    With reachable we actually mean not unreachable, i.e., we do not get ICMP unreachable messages, which must not mean that this host was reached by the scan.

  4. 4.

    This is basically a precaution against bad load balancers traded against the required TTL.

  5. 5.

    Our dataset excludes TTL exceeded messages generated by these traceroutes.

References

  1. Augustin, B., et al.: Avoiding traceroute anomalies with Paris traceroute. In: ACM IMC (2006)

    Google Scholar 

  2. Baker, F.: Requirements for IP Version 4 Routers. RFC 1812, RFC Editor (1995)

    Google Scholar 

  3. Bano, S., et al.: Scanning the internet for liveness. SIGCOMM CCR 48(2), 2–9 (2018)

    Article  Google Scholar 

  4. Braden, R.: Requirements for Internet Hosts - Communication Layers. RFC 1122, RFC Editor (1989)

    Google Scholar 

  5. Cisco: IP Routing Frequently Asked Questions. https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28745-44.html#qa5

  6. Cisco Systems, Inc.: Cisco IOS XR MPLS: mpls ip-ttl-propagate (2014). https://www.cisco.com/c/en/us/td/docs/routers/xr12000/software/xr12k_r4-1/mpls/command/reference/b_mpls_cr41xr12k/b_mpls_cr41xr12k_chapter_010.html#wp2864846713

  7. Custura, A., Fairhurst, G., Learmonth, I.: Exploring usable Path MTU in the Internet. In: IFIP Network Traffic Measurement and Analysis Conference (2018)

    Google Scholar 

  8. Donnet, B., Luckie, M., Mérindol, P., Pansiot, J.-J.: Revealing MPLS Tunnels obscured from traceroute. SIGCOMM CCR 42(2), 87–93 (2012)

    Article  Google Scholar 

  9. Durumeric, Z., et al.: The matter of heartbleed. In: ACM IMC (2014)

    Google Scholar 

  10. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning and its security applications. In: USENIX Security (2013)

    Google Scholar 

  11. Edeline, K., Kühlewind, M., Trammell, B., Donnet, B.: copycat: Testing differential treatment of new transport protocols in the wild. In: Proceedings of the Applied Networking Research Workshop (ANRW) (2017)

    Google Scholar 

  12. Finn, G.G.: A connectionless congestion control algorithm. SIGCOMM CCR 19(5), 12–31 (1989)

    Article  Google Scholar 

  13. Floyd, S.: TCP and explicit congestion notification. SIGCOMM CCR 24(5), 8–23 (1994)

    Article  MathSciNet  Google Scholar 

  14. Francois, P., Bonaventure, O.: Avoiding transient loops during the convergence of link-state routing protocols. IEEE/ACM Trans. Netw. 15, 1280–1292 (2007)

    Article  Google Scholar 

  15. Gill, S.: ICMP redirects are ba’ad, mkay? Technical report, Team Cymru Inc. (2002)

    Google Scholar 

  16. Gont, F.: ICMP Attacks Against TCP. RFC 5927, RFC Editor (2010)

    Google Scholar 

  17. Gont, F.: Deprecation of ICMP Source Quench Messages. RFC 6633, RFC Editor (2012)

    Google Scholar 

  18. Graham, R.: MASSCAN: Mass IP Port Scanner (2018). https://github.com/robertdavidgraham/masscan

  19. Guo, H., Heidemann, J.: Detecting ICMP rate limiting in the internet. In: Beverly, R., Smaragdakis, G., Feldmann, A. (eds.) PAM 2018. LNCS, vol. 10771, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76481-8_1

    Chapter  Google Scholar 

  20. Hengartner, U., Moon, S., Mortier, R., Diot, C.: Detection and analysis of routing loops in packet traces. In: ACM SIGCOMM Workshop on Internet Measurement (2002)

    Google Scholar 

  21. Hewlett Packard: HP-UX - Serviceguard A.11.19 on HP-UX 11.31: Source Quench Seen for Every IPMON Ping. https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c02190964

  22. Rüth, J., Zimmermann, T., Hohlfeld, O.: ICMP Dataset and Tools (2018). https://icmp.netray.io

  23. Johnson, D.: Finding all the elementary circuits of a directed graph. SIAM J. Comput. 4(1), 77–84 (1975)

    Article  MathSciNet  Google Scholar 

  24. Juniper Networks, Inc.: no-propagate-ttl - TechLibrary - Juniper Networks (2017). https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/no-propagate-ttl-edit-protocols-mpls.html

  25. Lone, Q., Luckie, M., Korczyński, M., van Eeten, M.: Using loops observed in traceroute to infer the ability to spoof. In: Kaafar, M.A., Uhlig, S., Amann, J. (eds.) PAM 2017. LNCS, vol. 10176, pp. 229–241. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54328-4_17

    Chapter  Google Scholar 

  26. Malone, D., Luckie, M.: Analysis of ICMP quotations. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 228–232. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71617-4_24

    Chapter  Google Scholar 

  27. Nokia: Router Configuration Guide Release 15.0.R5. https://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Configuration%20Guide%20R15.0.R5.pdf

  28. Postel, J.: Internet Control Message Protocol. RFC 792, RFC Editor (1981)

    Google Scholar 

  29. Reynolds, J., Postel, J.: Assigned Numbers. RFC 1700, RFC Editor (1994)

    Google Scholar 

  30. Rüth, J., Bormann, C., Hohlfeld, O.: Large-scale scanning of TCP’s initial window. In: ACM IMC (2017)

    Google Scholar 

  31. Rüth, J., Poese, I., Dietzel, C., Hohlfeld, O.: A first look at QUIC in the wild. In: Beverly, R., Smaragdakis, G., Feldmann, A. (eds.) PAM 2018. LNCS, vol. 10771, pp. 255–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76481-8_19

    Chapter  Google Scholar 

  32. Sridharan, A., Moon, S., Diot, C.: On the correlation between route dynamics and routing loops. In: ACM IMC (2003)

    Google Scholar 

  33. Varvello, M., Schomp, K., Naylor, D., Blackburn, J., Finamore, A., Papagiannaki, K.: Is the web HTTP/2 yet? In: Karagiannis, T., Dimitropoulos, X. (eds.) PAM 2016. LNCS, vol. 9631, pp. 218–232. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30505-9_17

    Chapter  Google Scholar 

  34. Wang, F., Qiu, J., Gao, L., Wang, J.: On understanding transient interdomain routing failures (2009)

    Google Scholar 

  35. Xia, J., Gao, L., Fei, T.: Flooding attacks by exploiting persistent forwarding loops. In: ACM IMC (2005)

    Google Scholar 

  36. Xia, J., Gao, L., Fei, T.: A measurement study of persistent forwarding loops on the internet. Comput. Netw. 51, 4780–4796 (2007)

    Article  Google Scholar 

  37. Zimmermann, T., Rüth, J., Wolters, B., Hohlfeld, O.: How HTTP/2 pushes the web: an empirical study of HTTP/2 server push. In: IFIP Networking Conference (2017)

    Google Scholar 

Download references

Acknowledgments

Funded by the Excellence Initiative of the German federal and state governments, as well as by the German Research Foundation (DFG) as part of project B1 within the Collaborative Research Center (CRC) 1053—MAKI. We would like to thank the network operators at RWTH Aachen University, especially Jens Hektor and Bernd Kohler as well as RWTH’s research data management team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rüth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rüth, J., Zimmermann, T., Hohlfeld, O. (2019). Hidden Treasures – Recycling Large-Scale Internet Measurements to Study the Internet’s Control Plane. In: Choffnes, D., Barcellos, M. (eds) Passive and Active Measurement. PAM 2019. Lecture Notes in Computer Science(), vol 11419. Springer, Cham. https://doi.org/10.1007/978-3-030-15986-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15986-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15985-6

  • Online ISBN: 978-3-030-15986-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics