Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 591))

Abstract

This chapter is concerned with the magnetic relaxation problem, in which an electrically conducting fluid is initialised in some non-trivial state, and is subsequently allowed to relax to some minimum-energy state, subject to the magnetohydrodynamic (MHD) equations. No driving or forcing is applied during this relaxation process and some form of dissipation allows energy to decrease until the system reaches a relaxed state. Our problem is simple: can we understand or predict this relaxed state?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While you can make A ⋅B into a material scalar by choosing an appropriate gauge (Webb et al. 2010), this would remove the utility of field-line helicity as a measure of changes in magnetic topology. Instead, a gauge of A should be chosen that is fixed in time (at least on the boundaries where it affects the h(V t)).

References

  • K. Bajer, H.K. Moffatt, Magnetic relaxation, current sheets, and structure formation in an extremely tenuous fluid medium. Astrophys. J. 779, 169 (2013)

    Article  Google Scholar 

  • M.R. Bareford, A.W. Hood, P.K. Browning, Coronal heating by the partial relaxation of twisted loops. Astron. Astrophys. 550, A40 (2013)

    Article  Google Scholar 

  • M.A. Berger, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79–104 (1984)

    Article  Google Scholar 

  • M.A. Berger, An energy formula for nonlinear force-free magnetic fields. Astron. Astrophys. 201, 355–361 (1988)

    MathSciNet  MATH  Google Scholar 

  • A. Bhattacharjee, R.L. Dewar, Energy principle with global invariants. Phys. Fluids 25, 887–897 (1982)

    Article  MathSciNet  Google Scholar 

  • D. Biskamp, Nonlinear Magnetohydrodynamics (Cambridge University, Cambridge, 1997)

    Google Scholar 

  • P.K. Browning, Helicity injection and relaxation in a solar-coronal magnetic loop with a free surface. J. Plasma Phys. 40, 263–280 (1988)

    Article  Google Scholar 

  • S. Candelaresi, D.I. Pontin, G. Hornig, Magnetic field relaxation and current sheets in an ideal plasma. Astrophys. J. 808, 134 (2015)

    Article  Google Scholar 

  • J. Cantarella, D. DeTurck, H. Gluck, M. Teytel, The spectrum of the curl operator on spherically symmetric domains. Phys. Plasmas 7, 2766–2775 (2000)

    Article  MathSciNet  Google Scholar 

  • A.R. Choudhuri, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University, Cambridge, 1998)

    Book  Google Scholar 

  • C.G. Gimblett, R.J. Hastie, P. Helander, Model for current-driven edge-localized modes. Phys. Rev. Lett. 96(3), 035006 (2006)

    Google Scholar 

  • J. Heyvaerts, E.R. Priest, Coronal heating by reconnection in DC current systems - a theory based on Taylor’s hypothesis. Astron. Astrophys. 137, 63–78 (1984)

    Google Scholar 

  • S.P. Hirshman, J.C. Whitson, Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria. Phys. Fluids 26, 3553–3568 (1983)

    Article  Google Scholar 

  • S.R. Hudson, R.L. Dewar, G. Dennis, M.J. Hole, M. McGann, G. von Nessi, S. Lazerson, Computation of multi-region relaxed magnetohydrodynamic equilibria. Phys. Plasmas 19(11), 112502 (2012)

    Article  Google Scholar 

  • A.S. Hussain, P.K. Browning, A.W. Hood, A relaxation model of coronal heating in multiple interacting flux ropes. Astron. Astrophys. 600, A5 (2017)

    Article  Google Scholar 

  • P. Laurence, M. Avellaneda, On Woltjer’s variational principle for force-free fields. J. Math. Phys. 32, 1240–1253 (1991)

    Article  MathSciNet  Google Scholar 

  • H.K. Moffatt, The energy spectrum of knots and links. Nature 347, 367–369 (1990)

    Article  Google Scholar 

  • H.K. Moffatt, Relaxation under topological constraints, in Topological Aspects of the Dynamics of Fluids and Plasmas, ed. by H.K. Moffatt, G.M. Zaslavsky, P. Comte, M. Tabor (Springer Netherlands, Dordrecht, 1992), pp. 3–28

    Chapter  Google Scholar 

  • H.K. Moffatt, Magnetic relaxation and the Taylor conjecture. J. Plasma Phys. 81(6), 905810608 (2015)

    Google Scholar 

  • R. Paccagnella, Relaxation models for single helical reversed field pinch plasmas. Phys. Plasmas 23(9), 092512 (2016)

    Article  Google Scholar 

  • D.I. Pontin, G. Hornig, The structure of current layers and degree of field-line braiding in coronal loops. Astrophys. J. 805, 47 (2015)

    Article  Google Scholar 

  • D.I. Pontin, S. Candelaresi, A.J.B. Russell, G. Hornig, Braided magnetic fields: equilibria, relaxation and heating. Plasma Phys. Controlled Fusion 58(5), 054008 (2016)

    Article  Google Scholar 

  • A. Reiman, Minimum energy state of a toroidal discharge. Phys. Fluids 23, 230–231 (1980)

    Article  MathSciNet  Google Scholar 

  • R.L. Ricca, F. Maggioni, On the groundstate energy spectrum of magnetic knots and links. J. Phys. A Math. Gen. 47(20), 205501 (2014)

    Article  MathSciNet  Google Scholar 

  • A.J.B. Russell, A.R. Yeates, G. Hornig, A.L. Wilmot-Smith, Evolution of field line helicity during magnetic reconnection. Phys. Plasmas 22(3), 032106 (2015)

    Article  Google Scholar 

  • C.B. Smiet, S. Candelaresi, D. Bouwmeester, Ideal relaxation of the Hopf fibration. Phys. Plasmas 24(7), 072110 (2017)

    Article  Google Scholar 

  • J.B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139–1141 (1974)

    Article  Google Scholar 

  • J.B. Taylor, Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741–763 (1986)

    Article  Google Scholar 

  • G. Valori, B. Kliem, T. Török, V.S. Titov, Testing magnetofrictional extrapolation with the Titov-Démoulin model of solar active regions. Astron. Astrophys. 519, A44 (2010)

    Article  Google Scholar 

  • A.A. van Ballegooijen, E.R. Priest, D.H. Mackay, Mean field model for the formation of filament channels on the sun. Astrophys. J. 539, 983–994 (2000)

    Article  Google Scholar 

  • G.M. Webb, Q. Hu, B. Dasgupta, G.P. Zank, Homotopy formulas for the magnetic vector potential and magnetic helicity: the Parker spiral interplanetary magnetic field and magnetic flux ropes. J. Geophys. Res. Space Phys. 115, A10112 (2010)

    Article  Google Scholar 

  • L. Woltjer, A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. 44, 489–491 (1958)

    Article  MathSciNet  Google Scholar 

  • A.R. Yeates, G. Hornig, The global distribution of magnetic helicity in the solar corona. Astron. Astrophys. 594, A98 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Yeates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeates, A.R. (2020). Magnetohydrodynamic Relaxation Theory. In: MacTaggart, D., Hillier, A. (eds) Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory. CISM International Centre for Mechanical Sciences, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-030-16343-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16343-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16342-6

  • Online ISBN: 978-3-030-16343-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics