Skip to main content

History, Chemistry and Antibacterial Spectrum

  • Chapter
  • First Online:
Polymyxin Antibiotics: From Laboratory Bench to Bedside

Abstract

Polymyxins are naturally occurring cyclic lipopeptides that were discovered more than 60 years ago. They have a narrow antibacterial spectrum, which is mainly against Gram-negative pathogens. The dry antibiotic pipeline, together with the increasing incidence of bacterial resistance in the clinic, has been dubbed ‘the perfect storm’. This has forced a re-evaluation of ‘old’ antibiotics, in particular the polymyxins, which retain activity against many multidrug-resistant (MDR) Gram-negative organisms. As a consequence, polymyxin B and colistin (polymyxin E) are now used as the last therapeutic option for infections caused by ‘superbugs’ such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. This chapter covers the history, chemistry and antibacterial spectrum of these very important last-line lipopeptide antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benedict RG, Langlykke AF (1947) Antibiotic activity of Bacillus polymyxa. J Bacteriol 54(1):24

    CAS  PubMed  Google Scholar 

  2. Stansly PG, Shepherd RG, White HJ (1947) Polymyxin: a new chemotherapeutic agent. Bull Johns Hopkins Hosp 81(1):43–54

    CAS  PubMed  Google Scholar 

  3. Ainsworth GC, Brown AM, Brownlee G (1947) Aerosporin, an antibiotic produced by bacillus aerosporus Greer. Nature 159(4060):263

    Article  CAS  PubMed  Google Scholar 

  4. Brownlee G, Bushby SR (1948) Chemotherapy and pharmacology of aerosporin; a selective gram-negative antibiotic. Lancet 1(6491):127–132

    Article  CAS  PubMed  Google Scholar 

  5. Brownlee G, Bushby SR, Short EI (1949) Comparative biological studies of polymyxin A and polymyxin D. Ann N Y Acad Sci 51(Art. 5):891–896

    Article  CAS  PubMed  Google Scholar 

  6. Brownlee G, Bushby SR, Short EI (1949) The pharmacology of polymyxin A, B, and D. Ann N Y Acad Sci 51(Art. 5):952–967

    Article  CAS  PubMed  Google Scholar 

  7. Shepherd RG, Stansly PG et al (1948) Chemical studies on polymyxin; isolation and preliminary purification. J Am Chem Soc 70(11):3771–3774

    Article  CAS  PubMed  Google Scholar 

  8. Jones TS (1948) The chemical nature of aerosporin. Biochem J 42(2):xxxv

    CAS  PubMed  Google Scholar 

  9. Brownlee G, Jones TS (1948) The polymyxins; a related series of antibiotics derived from B. polymyxa. Biochem J 43(2):xxv

    CAS  PubMed  Google Scholar 

  10. Catch JR, Jones TS, Wilkinson S (1948) The chemistry of polymyxin A; isolation of the amino-acids D-leucine, L-threonine, L-alpha gamma-diamiobutyric acid, and an unknown fatty acid. Biochem J 43(2):xxvii

    CAS  PubMed  Google Scholar 

  11. Jones TS (1948) The chemical basis for the classification of the polymyxins. Biochem J 43(2):xxvi

    CAS  PubMed  Google Scholar 

  12. Bell PH, Bone JF et al (1949) Chemical studies on polymyxin; comparison with aerosporin. Ann N Y Acad Sci 51(Art. 5):897–908

    Article  CAS  PubMed  Google Scholar 

  13. Jones TS (1949) Chemical evidence for the multiplicity of the antibiotics produced by Bacillus polymyxa. Ann N Y Acad Sci 51(Art. 5):909–916

    Article  CAS  PubMed  Google Scholar 

  14. Catch JR, Jones TS, Wilkinson S (1949) The chemistry of polymyxin A. Ann N Y Acad Sci 51(Art. 5):917–923

    Article  CAS  PubMed  Google Scholar 

  15. White HJ, Alverson CM et al (1949) Comparative biological studies of polymyxin and aerosporin. Ann N Y Acad Sci 51(Art. 5):879–890

    Article  CAS  PubMed  Google Scholar 

  16. Stansly PG, Brownlee G (1949) Nomenclature of polymyxin antibiotics. Nature 163(4146):611

    Article  CAS  PubMed  Google Scholar 

  17. Brownlee G (1949) Antibiotics derived from bacillus polymyxa. Ann N Y Acad Sci 51(Art. 5):875–878

    Article  CAS  PubMed  Google Scholar 

  18. Koyama Y, Kurosasa A, Tsuchiya A, Takakuta K (1950) A new antibiotic ‘colistin’ produced by spore-forming soil bacteria. J Antibiot 3:457–458

    Google Scholar 

  19. Wright WW, Welch H (1959) Chemical, biological and clinical observations on colistin. Antibiot Annu 7:61–74

    PubMed  Google Scholar 

  20. McCabe WR, Jackson GG, Kozij VM (1959) Clinical and laboratory observations on use of colistin in infections by gram-negative bacilli. Antibiot Annu 7:80–88

    Google Scholar 

  21. Schwartz BS, Warren MR, Barkley FA, Landis L (1959) Microbiological and pharmacological studies of colistin sulfate and sodium colistinmethanesulfonate. Antibiot Annu 7:41–60

    PubMed  Google Scholar 

  22. Wilkinson S (1963) Identity of colistin and polymyxin E. Lancet 1(7287):922–923

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki T, Hayashi K, Fujikawa K, Tsukamoto K (1965) The chemical structure of polymyxin E: the Identities of polymyxin E1 with colistin a and of polymyxin E2 with colistin B. J Biochem 57:226–227

    Article  CAS  PubMed  Google Scholar 

  24. Dautrevaux M, Biserte G (1961) Structure of colimycin. Bull Soc Chim Biol 43:495–504

    CAS  Google Scholar 

  25. Wilkinson S (1949) Crystalline derivatives of the polymyxins and the identification of the fatty acid component. Nature 164(4171):622

    Article  CAS  PubMed  Google Scholar 

  26. Hausmann W, Craig LC (1954) Polymyxin B1. Fractionation, molecular weight determination, amino acid and fatty acid composition. J Am Chem Soc 76(19):4892–4896

    Article  CAS  Google Scholar 

  27. Hayashi K, Suzuki T (1965) Chemical structures of polymyxin series antibiotics. Bull Inst Chem Res, Kyoto Univ 43(3):259–277

    CAS  Google Scholar 

  28. Hayashi K, Suketa Y, Tsukamoto K, Suzuki T (1966) Chemical structure of polymyxin D1. Experientia 22(6):354–355

    Article  CAS  PubMed  Google Scholar 

  29. Parker WL, Rathnum ML, Dean LD, Nimeck MW, Brown WE, Meyers E (1977) Polymyxin F, a new peptide antibiotic. J Antibiot (Tokyo) 30(9):767–769

    Article  CAS  Google Scholar 

  30. Wilkinson S, Lowe LA (1966) Structures of the polymyxins A and the question of identity with the polymyxins M. Nature 212(5059):311

    Article  CAS  PubMed  Google Scholar 

  31. Martin NI, Hu H, Moake MM, Churey JJ, Whittal R, Worobo RW, Vederas JC (2003) Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem 278(15):13124–13132. https://doi.org/10.1074/jbc.M212364200

    Article  CAS  PubMed  Google Scholar 

  32. Matsunaga H, Suwa K, Takeyama S, Kimura Y (1995) Polymyxin P, antibiotics from bacillus polymyxa t-39. Bull Mukogawa Women’s Uni Nat Sci 43:37–43

    CAS  Google Scholar 

  33. Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru JJ, Chen XH, Wang Q, Borriss R (2013) Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol 13(1):137. https://doi.org/10.1186/1471-2180-13-137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shoji J, Kato T, Hinoo H (1977) The structures of two new polymyxin group antibiotics. J Antibiot (Tokyo) 30(5):427–429

    Article  CAS  Google Scholar 

  35. Shoji J, Kato T, Hinoo H (1977) The structure of polymyxin S. (Studies on antibiotics from the genus Bacillus. XXI). J Antibiot (Tokyo) 30(12):1035–1041

    Article  CAS  Google Scholar 

  36. Shoji J, Kato T, Hinoo H (1977) The structure of polymyxin T1. (Studies on antibiotics from the genus Bacillus. XXII). J Antibiot (Tokyo) 30(12):1042–1048

    Article  CAS  Google Scholar 

  37. Brownlee G, Bushby SR, Short EI (1952) The chemotherapy and pharmacology of the polymyxins. Br J Pharmacol Chemother 7(1):170–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46:723–763

    Article  CAS  PubMed  Google Scholar 

  39. Nord NM, Hoeprich PD (1964) Polymyxin B and colistin. A critical comparison. N Engl J Med 270:1030–1035

    Article  CAS  PubMed  Google Scholar 

  40. Barnett M, Bushby SR, Wilkinson S (1964) Sodium sulphomethyl derivatives of polymyxins. Br J Pharmacol Chemother 23:552–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lepetit R (1908-1910) Ethoxyphenylaminomethanesulphonate of sodium. Friedl 9:1969–1970

    Google Scholar 

  42. Koyama Y (1957) [Colimycin]. G Ital Chemioter 4(3–4):279–287

    Google Scholar 

  43. Clifford HE, Stewart GT (1961) Intraventricular administration of a new derivative of polymyxin B in meningitis due to Ps. pyocyanea. Lancet 2(7195):177–180

    Article  CAS  PubMed  Google Scholar 

  44. Ross S, Puig JR, Zaremba EA (1959) Colistin: some preliminary laboratory and clinical observations in specific gastroenteritis in infants and children. Antibiot Annu 7:89–100

    PubMed  Google Scholar 

  45. Kwa A, Kasiakou SK, Tam VH, Falagas ME (2007) Polymyxin B: similarities to and differences from colistin (polymyxin E). Expert Rev Anti-Infect Ther 5(5):811–821. https://doi.org/10.1586/14787210.5.5.811

    Article  CAS  PubMed  Google Scholar 

  46. Greenwood D (2003) Miscellaneous antibacterial agents. In: Finch RG, Greenwood D, Norrby SR, Whitley RJ (eds) Antibiotics and chemotherapy: anti-infective agents and their use in therapy. Curchill Livingstone, Philadelphia, pp 409–411

    Google Scholar 

  47. Chamberlain G, Needham P (1976) The absorption of antibiotics from the bladder. J Urol 116(2):172–173

    Article  CAS  PubMed  Google Scholar 

  48. Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40(9):1333–1341

    Article  CAS  PubMed  Google Scholar 

  49. Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K (2005) Evaluation of colistin as an agent against multi-resistant gram-negative bacteria. Int J Antimicrob Agents 25(1):11–25

    Article  CAS  PubMed  Google Scholar 

  50. Bergan T, Fuglesang J (1982) Polymyxin antibiotics: chemical and pharmacokinetic properties. Antibiot Chemother 31:119–144

    Article  CAS  PubMed  Google Scholar 

  51. Goodwin NJ (1969) Colistin sulfate versus sodium colistimethate. Ann Intern Med 70(1):232–233

    Article  CAS  PubMed  Google Scholar 

  52. Kunin CM (1968) More on antimicrobials in renal failure. Ann Intern Med 69(2):397–398

    Article  CAS  PubMed  Google Scholar 

  53. Meleney FL, Prout GR Jr (1961) Some laboratory and clinical observations on coly-mycin (colistin) with particular reference to Pseudomonas infections. Surg Gynecol Obstet 112:211–217

    CAS  PubMed  Google Scholar 

  54. Petersdorf RG, Hook EW (1960) The use of colistin in the treatment of infections of the urinary tract. Bull Johns Hopkins Hosp 107:133–142

    CAS  PubMed  Google Scholar 

  55. Fekety FR Jr, Norman PS, Cluff LE (1962) The treatment of gram-negative bacillary infections with colistin. The toxicity and efficacy of large doses in forty-eight patients. Ann Intern Med 57:214–229

    Article  PubMed  Google Scholar 

  56. Taylor G, Allison H (1962) “Colomycin”. Laboratory and clinical investigations. Br Med J 2(5298):161–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beveridge EG, Martin AJ (1967) Sodium sulphomethyl derivatives of polymyxins. Br J Pharmacol Chemother 29(2):125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wertheim H, Van Nguyen K, Hara GL, Gelband H, Laxminarayan R, Mouton J, Cars O (2013) Global survey of polymyxin use: a call for international guidelines. J Glob Antimicrob Resistance 1(3):131–134. https://doi.org/10.1016/j.jgar.2013.03.012

    Article  Google Scholar 

  59. Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE (1970) Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med 72(6):857–868

    Article  CAS  PubMed  Google Scholar 

  60. Ryan KJ, Schainuck LI, Hickman RO, Striker GE (1969) Colistimethate toxicity. Report of a fatal case in a previously healthy child. JAMA 207(11):2099–2101

    Article  CAS  PubMed  Google Scholar 

  61. Brown JM, Dorman DC, Roy LP (1970) Acute renal failure due to overdosage of colistin. Med J Aust 2(20):923–924

    CAS  PubMed  Google Scholar 

  62. Yow EM, Moyer JH (1953) Toxicity of polymyxin B. II. Human studies with particular reference to evaluation of renal function. AMA Arch Intern Med 92(2):248–257

    Article  CAS  PubMed  Google Scholar 

  63. Elwood CM, Lucas GD, Muehrcke RC (1966) Acute renal failure associated with sodium colistimethate treatment. Arch Intern Med 118(4):326–334

    Article  CAS  PubMed  Google Scholar 

  64. Duncan DA (1973) Colistin toxicity. Neuromuscular and renal manifestations. Two cases treated by hemodialysis. Minn Med 56(1):31–35

    CAS  PubMed  Google Scholar 

  65. Price DJ, Graham DI (1970) Effects of large doses of colistin sulphomethate sodium on renal function. Br Med J 4(734):525–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lindesmith LA, Baines RD Jr, Bigelow DB, Petty TL (1968) Reversible respiratory paralysis associated with polymyxin therapy. Ann Intern Med 68(2):318–327

    Article  CAS  PubMed  Google Scholar 

  67. Wolinsky E, Hines JD (1962) Neurotoxic and nephrotoxic effects of colistin patients with renal disease. N Engl J Med 266:759–762

    Article  CAS  PubMed  Google Scholar 

  68. Nation RL, Li J (2009) Colistin in the 21st century. Curr Opin Infect Dis 22(6):535–543. https://doi.org/10.1097/QCO.0b013e328332e672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jones RN (2001) Resistance patterns among nosocomial pathogens: trends over the past few years. Chest 119(2 Suppl):397S–404S

    Article  CAS  PubMed  Google Scholar 

  70. Talbot GH, Bradley J, Edwards JE Jr, Gilbert D, Scheld M, Bartlett JG (2006) Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of America. Clin Infect Dis 42(5):657–668. (Erratum in Clin Infect Dis 2006; 2042:1065)

    Article  PubMed  Google Scholar 

  71. Boucher HW, Talbot GH, Benjamin DK Jr, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, Infectious diseases society of A (2013) 10 x ‘20 progress--development of new drugs active against gram-negative bacilli: an update from the infectious diseases society of America. Clin Infect Dis 56(12):1685–1694. https://doi.org/10.1093/cid/cit152

    Article  PubMed  PubMed Central  Google Scholar 

  72. Livermore DM (2004) The need for new antibiotics. Clin Microbiol Infect 10(Suppl 4):1–9. https://doi.org/10.1111/j.1465-0691.2004.1004.x

    Article  PubMed  Google Scholar 

  73. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the infectious diseases society of America. Clin Infect Dis 46(2):155–164. https://doi.org/10.1086/524891

    Article  PubMed  Google Scholar 

  74. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6(1):29–40. https://doi.org/10.1038/nrd2201

    Article  CAS  PubMed  Google Scholar 

  75. Livermore DM (2003) The threat from the pink corner. Ann Med 35(4):226–234

    Article  PubMed  Google Scholar 

  76. Walker B, Barrett S, Polasky S, Galaz V, Folke C, Engstrom G, Ackerman F, Arrow K, Carpenter S, Chopra K, Daily G, Ehrlich P, Hughes T, Kautsky N, Levin S, Maler KG, Shogren J, Vincent J, Xepapadeas T, de Zeeuw A (2009) Environment. Looming global-scale failures and missing institutions. Science 325(5946):1345–1346. https://doi.org/10.1126/science.1175325

    Article  CAS  PubMed  Google Scholar 

  77. Garnacho-Montero J, Ortiz-Leyba C, Jimenez-Jimenez FJ, Barrero-Almodovar AE, Garcia-Garmendia JL, Bernabeu-Wittel IM, Gallego-Lara SL, Madrazo-Osuna J (2003) Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis 36(9):1111–1118. https://doi.org/10.1086/374337

    Article  CAS  PubMed  Google Scholar 

  78. Levin AS, Barone AA, Penco J, Santos MV, Marinho IS, Arruda EA, Manrique EI, Costa SF (1999) Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin Infect Dis 28(5):1008–1011

    Article  CAS  PubMed  Google Scholar 

  79. Linden PK, Kusne S, Coley K, Fontes P, Kramer DJ, Paterson D (2003) Use of parenteral colistin for the treatment of serious infection due to antimicrobial-resistant Pseudomonas aeruginosa. Clin Infect Dis 37(11):e154–e160. https://doi.org/10.1086/379611

    Article  CAS  PubMed  Google Scholar 

  80. Markou N, Apostolakos H, Koumoudiou C, Athanasiou M, Koutsoukou A, Alamanos I, Gregorakos L (2003) Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients. Crit Care 7(5):R78–R83

    Article  PubMed  PubMed Central  Google Scholar 

  81. Michalopoulos AS, Tsiodras S, Rellos K, Mentzelopoulos S, Falagas ME (2005) Colistin treatment in patients with ICU-acquired infections caused by multiresistant gram-negative bacteria: the renaissance of an old antibiotic. Clin Microbiol Infect 11(2):115–121

    Article  CAS  PubMed  Google Scholar 

  82. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL (2006) Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6(9):589–601

    Article  CAS  PubMed  Google Scholar 

  83. Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21(3):449–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53(12):5046–5054. https://doi.org/10.1128/AAC.00774-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10(9):597–602. https://doi.org/10.1016/S1473-3099(10)70143-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cornaglia G, Giamarellou H, Rossolini GM (2011) Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis 11(5):381–393. https://doi.org/10.1016/S1473-3099(11)70056-1

    Article  CAS  PubMed  Google Scholar 

  87. Rolain JM, Parola P, Cornaglia G (2010) New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect 16(12):1699–1701. https://doi.org/10.1111/j.1469-0691.2010.03385.x

    Article  CAS  PubMed  Google Scholar 

  88. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure--activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916. https://doi.org/10.1021/jm900999h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jin L, Li J, Nation RL, Nicolazzo JA (2009) Brain penetration of colistin in mice assessed by a novel high-performance liquid chromatographic technique. Antimicrob Agents Chemother 53(10):4247–4251. https://doi.org/10.1128/AAC.00485-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kimura Y, Kitamura H, Araki T, Noguchi K, Baba M (1981) Analytical and preparative methods for polymyxin antibiotics using high-performance liquid chromatography with a porous styrene divinylbenzene paking. J Chromatogr 206:563–572

    Article  CAS  Google Scholar 

  91. Terabe S, Konaka R, Inouye K (1979) Separation of some polypeptide hormones by high-performance liquid chromatography. J Chromatogr 172:163–177

    Article  CAS  PubMed  Google Scholar 

  92. Orwa JA, Govaerts C, Busson R, Roets E, Van Schepdael A, Hoogmartens J (2001) Isolation and structural characterization of polymyxin B components. J Chromatogr A 912(2):369–373

    Article  CAS  PubMed  Google Scholar 

  93. Orwa JA, Govaerts C, Busson R, Roets E, Van Schepdael A, Hoogmartens J (2001) Isolation and structural characterization of colistin components. J Antibiot (Tokyo) 54(7):595–599

    Article  CAS  Google Scholar 

  94. Govaerts C, Orwa J, Van Schepdael A, Roets E, Hoogmartens J (2002) Liquid chromatography-ion trap tandem mass spectrometry for the characterization of polypeptide antibiotics of the colistin series in commercial samples. J Chromatogr A 976(1–2):65–78

    Article  CAS  PubMed  Google Scholar 

  95. Govaerts C, Orwa J, Van Schepdael A, Roets E, Hoogmartens J (2002) Characterization of polypeptide antibiotics of the polymyxin series by liquid chromatography electrospray ionization ion trap tandem mass spectrometry. J Pept Sci 8(2):45–55. https://doi.org/10.1002/psc.367

    Article  CAS  PubMed  Google Scholar 

  96. Shaheen M, Li J, Ross AC, Vederas JC, Jensen SE (2011) Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem Biol 18(12):1640–1648. https://doi.org/10.1016/j.chembiol.2011.09.017

    Article  CAS  PubMed  Google Scholar 

  97. Terabe S, Konaka R, Shoji J (1979) Seperation of polymyxins and octapeptins by high-performance liquid chromatography. J Chromatogr 173:313–320

    Article  CAS  Google Scholar 

  98. Decolin D, Leroy P, Nicolas A, Archimbault P (1997) Hyphenated liquid chromatographic method for the determination of colistin residues in bovine tissues. J Chromatogr Sci 35(12):557–564

    Article  CAS  PubMed  Google Scholar 

  99. He J, Ledesma KR, Lam WY, Figueroa DA, Lim TP, Chow DS, Tam VH (2010) Variability of polymyxin B major components in commercial formulations. Int J Antimicrob Agents 35(3):308–310. https://doi.org/10.1016/j.ijantimicag.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  100. British Pharmacopoeia Comission (2014) British pharmacopeia. Stationary Office, London

    Google Scholar 

  101. European Pharmacopoeia Commission (2014) European pharmacopoeia, 8th edn. Council of Europe, Strasbourg

    Google Scholar 

  102. United States Pharmacopeial Convention (2013) United States pharmacopeia 36: National Formulary 31. United States Pharmacopeial Convention, Inc., Rockville, MD, USA

    Google Scholar 

  103. Bergen PJ, Li J, Rayner CR, Nation RL (2006) Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50(6):1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K (2004) Pharmacokinetics of colistin methanesulphonate and colistin in rats following an intravenous dose of colistin methanesulphonate. J Antimicrob Chemother 53(5):837–840

    Article  CAS  PubMed  Google Scholar 

  105. Li J, Coulthard K, Milne R, Nation RL, Conway S, Peckham D, Etherington C, Turnidge J (2003) Steady-state pharmacokinetics of intravenous colistin methanesulphonate in patients with cystic fibrosis. J Antimicrob Chemother 52(6):987–992

    Article  CAS  PubMed  Google Scholar 

  106. Marchand S, Lamarche I, Gobin P, Couet W (2010) Dose-ranging pharmacokinetics of colistin methanesulphonate (CMS) and colistin in rats following single intravenous CMS doses. J Antimicrob Chemother 65(8):1753–1758. https://doi.org/10.1093/jac/dkq183

    Article  CAS  PubMed  Google Scholar 

  107. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, Silveira FP, Forrest A, Nation RL (2011) Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 55(7):3284–3294. https://doi.org/10.1128/AAC.01733-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Markou N, Markantonis SL, Dimitrakis E, Panidis D, Boutzouka E, Karatzas S, Rafailidis P, Apostolakos H, Baltopoulos G (2008) Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, gram-negative bacilli infections: a prospective, open-label, uncontrolled study. Clin Ther 30(1):143–151. https://doi.org/10.1016/j.clinthera.2008.01.015

    Article  CAS  PubMed  Google Scholar 

  109. Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson B, Papadomichelakis E, Antoniadou A, Giamarellou H, Armaganidis A, Cars O, Friberg LE (2012) Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother 56(8):4241–4249. https://doi.org/10.1128/AAC.06426-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, Karaiskos I, Poulakou G, Kontopidou F, Armaganidis A, Cars O, Giamarellou H (2009) Population pharmacokinetic analysis of colistin methanesulphonate and colistin after intravenous administration in critically ill patients with gram-negative bacterial infections. Antimicrob Agents Chemother 53:3430–3436. https://doi.org/10.1128/AAC.01361-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee J, Han S, Jeon S, Hong T, Song W, Woo H, Yim DS (2013) Population pharmacokinetic analysis of colistin in burn patients. Antimicrob Agents Chemother 57(5):2141–2146. https://doi.org/10.1128/AAC.00271-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Imberti R, Cusato M, Villani P, Carnevale L, Iotti GA, Langer M, Regazzi M (2010) Steady-state pharmacokinetics and BAL concentration of colistin in critically Ill patients after IV colistin methanesulfonate administration. Chest 138(6):1333–1339. https://doi.org/10.1378/chest.10-0463

    Article  CAS  PubMed  Google Scholar 

  113. He H, Li JC, Nation RL, Jacob J, Chen G, Lee HJ, Tsuji BT, Thompson PE, Roberts K, Velkov T, Li J (2013) Pharmacokinetics of four different brands of colistimethate and formed colistin in rats. J Antimicrob Chemother 68(10):2311–2317. https://doi.org/10.1093/jac/dkt207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K (2003) Stability of colistin and colistin methanesulfonate in aqueous media and plasma as determined by high-performance liquid chromatography. Antimicrob Agents Chemother 47(4):1364–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gales AC, Jones RN, Sader HS (2011) Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006-09). J Antimicrob Chemother 66:2070–2074

    Article  CAS  PubMed  Google Scholar 

  116. Hirsch HA, Mc CC, Finland M (1960) Polymyxin B and colistin: activity, resistance and crossresistance in vitro. Proc Soc Exp Biol Med 103:338–342

    Article  CAS  PubMed  Google Scholar 

  117. Catchpole CR, Andrews JM, Brenwald N, Wise R (1997) A reassessment of the in-vitro activity of colistin sulphomethate sodium. J Antimicrob Chemother 39(2):255–260

    Article  CAS  PubMed  Google Scholar 

  118. Schulin T (2002) In vitro activity of the aerosolized agents colistin and tobramycin and five intravenous agents against Pseudomonas aeruginosa isolated from cystic fibrosis patients in southwestern Germany. J Antimicrob Chemother 49(2):403–406

    Article  CAS  PubMed  Google Scholar 

  119. Tan TY, Ng SY (2006) The in-vitro activity of colistin in gram-negative bacteria. Singap Med J 47(7):621–624

    CAS  Google Scholar 

  120. Gales AC, Reis AO, Jones RN (2001) Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J Clin Microbiol 39(1):183–190. https://doi.org/10.1128/JCM.39.1.183-190.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Niks M, Hanzen J, Ohlasova D, Rovna D, Purgelova A, Szovenyiova Z, Vaculikova A (2004) Multiresistant nosocomial bacterial strains and their “in vitro” susceptibility to chloramphenicol and colistin. Klin Mikrobiol Infekc Lek 10(3):124–129

    PubMed  Google Scholar 

  122. Bogiel T, Mikucka A, Skalski T, Gospodarek E (2010) Occurrence and susceptibility to antibiotics of carbapenem-resistant Pseudomonas aeruginosa strains between 1998 and 2009. Med Dosw Mikrobiol 62(3):221–229

    CAS  PubMed  Google Scholar 

  123. Cernohorska L, Slavikova P (2010) Antibiotic resistance and biofilm formation in Pseudomonas aeruginosa strains isolated from patients with urinary tract infections. Epidemiol Mikrobiol Imunol 59(4):154–157

    Google Scholar 

  124. Walkty A, DeCorby M, Nichol K, Karlowsky JA, Hoban DJ, Zhanel GG (2009) In vitro activity of colistin (polymyxin E) against 3,480 isolates of gram-negative bacilli obtained from patients in Canadian hospitals in the CANWARD study, 2007-2008. Antimicrob Agents Chemother 53(11):4924–4926. https://doi.org/10.1128/AAC.00786-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhanel GG, Adam HJ, Baxter MR, Fuller J, Nichol KA, Denisuik AJ, Lagace-Wiens PR, Walkty A, Karlowsky JA, Schweizer F, Hoban DJ, Canadian Antimicrobial Resistance A (2013) Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: results of the CANWARD 2007-11 study. J Antimicrob Chemother 68(Suppl 1):i7–i22. https://doi.org/10.1093/jac/dkt022

    Article  CAS  PubMed  Google Scholar 

  126. Jones RN, Guzman-Blanco M, Gales AC, Gallegos B, Castro AL, Martino MD, Vega S, Zurita J, Cepparulo M, Castanheira M (2013) Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis: Off Publ Braz Soc Infect Dis 17(6):672–681. https://doi.org/10.1016/j.bjid.2013.07.002

    Article  Google Scholar 

  127. Gales AC, Castanheira M, Jones RN, Sader HS (2012) Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY antimicrobial surveillance program (Latin America, 2008–2010). Diagn Microbiol Infect Dis 73(4):354–360. https://doi.org/10.1016/j.diagmicrobio.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  128. Lee JY, Song JH, Ko KS (2011) Identification of nonclonal Pseudomonas aeruginosa isolates with reduced colistin susceptibility in Korea. Microb Drug Resist 17(2):299–304. https://doi.org/10.1089/mdr.2010.0145

    Article  CAS  PubMed  Google Scholar 

  129. Kuck NA (1976) In vitro and in vivo activities of minocycline and other antibiotics against Acinetobacter (Herellea-Mima). Antimicrob Agents Chemother 9(3):493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yau W, Owen RJ, Poudyal A, Bell JM, Turnidge JD, Yu HH, Nation RL, Li J (2009) Colistin hetero-resistance in multidrug-resistant Acinetobacter baumannii clinical isolates from the Western Pacific region in the SENTRY antimicrobial surveillance programme. J Infect 58(2):138–144. https://doi.org/10.1016/j.jinf.2008.11.002

    Article  PubMed  Google Scholar 

  131. Queenan AM, Pillar CM, Deane J, Sahm DF, Lynch AS, Flamm RK, Peterson J, Davies TA (2012) Multidrug resistance among Acinetobacter spp. in the USA and activity profile of key agents: results from CAPITAL Surveillance 2010. Diagn Microbiol Infect Dis 73(3):267–270. https://doi.org/10.1016/j.diagmicrobio.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  132. Hawser SP (2010) Susceptibility of Klebsiella pneumoniae clinical isolates from 2007 to 2009 to colistin and comparator antibiotics. Int J Antimicrob Agents 36(4):383–384. https://doi.org/10.1016/j.ijantimicag.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  133. Sader HS, Farrell DJ, Jones RN (2011) Susceptibility of Klebsiella spp. to colistin and polymyxin B: results from the SENTRY antimicrobial surveillance program (2006-2009). Int J Antimicrob Agents 37(2):174–175. https://doi.org/10.1016/j.ijantimicag.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  134. Nakamura T, Komatsu M, Yamasaki K, Fukuda S, Higuchi T, Ono T, Nishio H, Sueyoshi N, Kida K, Satoh K, Toda H, Toyokawa M, Nishi I, Sakamoto M, Akagi M, Mizutani T, Nakai I, Kofuku T, Orita T, Zikimoto T, Natsume S, Wada Y (2014) Susceptibility of various oral antibacterial agents against extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. J Infect Chemother 20(1):48–51. https://doi.org/10.1016/j.jiac.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  135. Johansen HK, Moskowitz SM, Ciofu O, Pressler T, Hoiby N (2008) Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cyst Fibros 7(5):391–397. https://doi.org/10.1016/j.jcf.2008.02.003

    Article  PubMed  Google Scholar 

  136. Li J, Turnidge J, Milne R, Nation RL, Coulthard K (2001) In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 45(3):781–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Falagas ME, Rafailidis PI, Matthaiou DK, Virtzili S, Nikita D, Michalopoulos A (2008) Pandrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii infections: characteristics and outcome in a series of 28 patients. Int J Antimicrob Agents 32(5):450–454. https://doi.org/10.1016/j.ijantimicag.2008.05.016

    Article  CAS  PubMed  Google Scholar 

  138. Landman D, Bratu S, Alam M, Quale J (2005) Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. J Antimicrob Chemother 55(6):954–957

    Article  CAS  PubMed  Google Scholar 

  139. Wang CY, Jerng JS, Chen KY, Lee LN, Yu CJ, Hsueh PR, Yang PC (2006) Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: clinical features, risk-factors and outcomes. Clin Microbiol Infect 12(1):63–68. https://doi.org/10.1111/j.1469-0691.2005.01305.x

    Article  CAS  PubMed  Google Scholar 

  140. Denton M, Kerr K, Mooney L, Keer V, Rajgopal A, Brownlee K, Arundel P, Conway S (2002) Transmission of colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 34(4):257–261. https://doi.org/10.1002/ppul.10166

    Article  CAS  PubMed  Google Scholar 

  141. Al-Sweih NA, Al-Hubail MA, Rotimi VO (2011) Emergence of tigecycline and colistin resistance in acinetobacter species isolated from patients in Kuwait hospitals. J Chemother 23(1):13–16

    Article  CAS  PubMed  Google Scholar 

  142. Ko KS, Suh JY, Kwon KT, Jung SI, Park KH, Kang CI, Chung DR, Peck KR, Song JH (2007) High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J Antimicrob Chemother 60(5):1163–1167. https://doi.org/10.1093/jac/dkm305

    Article  CAS  PubMed  Google Scholar 

  143. Antoniadou A, Kontopidou F, Poulakou G, Koratzanis E, Galani I, Papadomichelakis E, Kopterides P, Souli M, Armaganidis A, Giamarellou H (2007) Colistin-resistant isolates of Klebsiella pneumoniae emerging in intensive care unit patients: first report of a multiclonal cluster. J Antimicrob Chemother 59(4):786–790. https://doi.org/10.1093/jac/dkl562

    Article  CAS  PubMed  Google Scholar 

  144. Meletis G, Tzampaz E, Sianou E, Tzavaras I, Sofianou D (2011) Colistin heteroresistance in carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother 66(4):946–947. https://doi.org/10.1093/jac/dkr007

    Article  CAS  PubMed  Google Scholar 

  145. Mezzatesta ML, Gona F, Caio C, Petrolito V, Sciortino D, Sciacca A, Santangelo C, Stefani S (2011) Outbreak of KPC-3-producing, and colistin-resistant, Klebsiella pneumoniae infections in two Sicilian hospitals. Clin Microbiol Infect. https://doi.org/10.1111/j.1469-0691.2011.03572.x

    Article  CAS  PubMed  Google Scholar 

  146. Suh JY, Son JS, Chung DR, Peck KR, Ko KS, Song JH (2010) Nonclonal emergence of colistin-resistant Klebsiella pneumoniae isolates from blood samples in South Korea. Antimicrob Agents Chemother 54(1):560–562. https://doi.org/10.1128/AAC.00762-09

    Article  CAS  PubMed  Google Scholar 

  147. Menuet M, Bittar F, Stremler N, Dubus JC, Sarles J, Raoult D, Rolain JM (2008) First isolation of two colistin-resistant emerging pathogens, Brevundimonas diminuta and Ochrobactrum anthropi, in a woman with cystic fibrosis: a case report. J Med Case Rep 2:373. https://doi.org/10.1186/1752-1947-2-373

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mendes RE, Fritsche TR, Sader HS, Jones RN (2008) Increased antimicrobial susceptibility profiles among polymyxin-resistant Acinetobacter baumannii clinical isolates. Clin Infect Dis 46(8):1324–1326. https://doi.org/10.1086/533476

    Article  CAS  PubMed  Google Scholar 

  149. Li J, Nation RL, Owen RJ, Wong S, Spelman D, Franklin C (2007) Antibiograms of multidrug-resistant clinical Acinetobacter baumannii: promising therapeutic options for treatment of infection with colistin-resistant strains. Clin Infect Dis 45(5):594–598. https://doi.org/10.1086/520658

    Article  CAS  PubMed  Google Scholar 

  150. Bergen PJ, Forrest A, Bulitta JB, Tsuji BT, Sidjabat HE, Paterson DL, Li J, Nation RL (2011) Clinically relevant plasma concentrations of colistin in combination with imipenem enhance pharmacodynamic activity against multidrug-resistant Pseudomonas aeruginosa at multiple inocula. Antimicrob Agents Chemother 55(11):5134–5142. https://doi.org/10.1128/AAC.05028-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hermes DM, Pormann Pitt C, Lutz L, Teixeira AB, Ribeiro VB, Netto B, Martins AF, Zavascki AP, Barth AL (2013) Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and -resistant Pseudomonas aeruginosa. J Med Microbiol 62. (Pt 8:1184–1189. https://doi.org/10.1099/jmm.0.059220-0

    Article  PubMed  Google Scholar 

  152. Vidaillac C, Benichou L, Duval RE (2012) In vitro synergy of colistin combinations against colistin-resistant acinetobacter baumannii, pseudomonas aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob Agents Chemother 56(9):4856–4861. https://doi.org/10.1128/AAC.05996-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hawley JS, Murray CK, Jorgensen JH (2008) Colistin heteroresistance in acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother 52(1):351–352. https://doi.org/10.1128/AAC.00766-07

    Article  CAS  PubMed  Google Scholar 

  154. Owen RJ, Li J, Nation RL, Spelman D (2007) In vitro pharmacodynamics of colistin against Acinetobacter baumannii clinical isolates. J Antimicrob Chemother 59(3):473–477. https://doi.org/10.1093/jac/dkl512

    Article  CAS  PubMed  Google Scholar 

  155. Tan CH, Li J, Nation RL (2007) Activity of colistin against heteroresistant Acinetobacter baumannii and emergence of resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 51(9):3413–3415. https://doi.org/10.1128/AAC.01571-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lo-Ten-Foe JR, de Smet AM, Diederen BM, Kluytmans JA, van Keulen PH (2007) Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrob Agents Chemother 51(10):3726–3730. https://doi.org/10.1128/AAC.01406-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, Liolios L (2006) Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 50(9):2946–2950. https://doi.org/10.1128/AAC.00103-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Poudyal A, Howden BP, Bell JM, Gao W, Owen RJ, Turnidge JD, Nation RL, Li J (2008) In vitro pharmacodynamics of colistin against multidrug-resistant Klebsiella pneumoniae. J Antimicrob Chemother 62(6):1311–1318. https://doi.org/10.1093/jac/dkn425

    Article  CAS  PubMed  Google Scholar 

  159. Gales AC, Jones RN, Sader HS (2006) Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004). Clin Microbiol Infect 12(4):315–321. https://doi.org/10.1111/j.1469-0691.2005.01351.x

    Article  CAS  PubMed  Google Scholar 

  160. Kosakai N, Oguri T (1976) Distribution and changes of antibiotic susceptibility of genus Haemophilus (author’s transl). Jpn J Antibiot 29(2):159–166

    CAS  PubMed  Google Scholar 

  161. Thornsberry C, Baker CN, Kirven LA (1978) In vitro activity of antimicrobial agents on Legionnaires disease bacterium. Antimicrob Agents Chemother 13(1):78–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fosse T, Giraud-Morin C, Madinier I (2003) Induced colistin resistance as an identifying marker for Aeromonas phenospecies groups. Lett Appl Microbiol 36(1):25–29

    Article  CAS  PubMed  Google Scholar 

  163. Rastogi N, Potar MC, David HL (1986) Antimycobacterial spectrum of colistin (polymixin E). Ann Inst Pasteur Microbiol 137A(1):45–53

    Article  CAS  PubMed  Google Scholar 

  164. Aydin F, Atabay HI, Akan M (2001) The isolation and characterization of Campylobacter jejuni subsp. jejuni from domestic geese (Anser anser). J Appl Microbiol 90(4):637–642

    Article  CAS  PubMed  Google Scholar 

  165. Kiehlbauch JA, Baker CN, Wachsmuth IK (1992) In vitro susceptibilities of aerotolerant Campylobacter isolates to 22 antimicrobial agents. Antimicrob Agents Chemother 36(4):717–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Felegie TP, Yu VL, Rumans LW, Yee RB (1979) Susceptibility of Pseudomonas maltophilia to antimicrobial agents, singly and in combination. Antimicrob Agents Chemother 16(6):833–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nicodemo AC, Araujo MR, Ruiz AS, Gales AC (2004) In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, Etest and agar dilution methods. J Antimicrob Chemother 53(4):604–608. https://doi.org/10.1093/jac/dkh128

    Article  CAS  PubMed  Google Scholar 

  168. Maurin M, Gasquet S, Ducco C, Raoult D (1995) MICs of 28 antibiotic compounds for 14 Bartonella (formerly Rochalimaea) isolates. Antimicrob Agents Chemother 39(11):2387–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Myers WF, Grossman DM, Wisseman CL Jr (1984) Antibiotic susceptibility patterns in Rochalimaea quintana, the agent of trench fever. Antimicrob Agents Chemother 25(6):690–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lesmana M, Subekti DS, Tjaniadi P, Simanjuntak CH, Punjabi NH, Campbell JR, Oyofo BA (2002) Spectrum of vibrio species associated with acute diarrhea in North Jakarta, Indonesia. Diagn Microbiol Infect Dis 43(2):91–97

    Article  PubMed  Google Scholar 

  171. von Graevenitz A, Nourbakhsh M (1972) Antimicrobial resistance of the genera Proteus, Providencia and Serratia with special reference to multiple resistance patterns. Med Microbiol Immunol 157(2):142–148

    Article  Google Scholar 

  172. Greenfield S, Feingold DS (1970) The synergistic action of the sulfonamides and the polymyxins against Serratia marcescens. J Infect Dis 121(5):555–558

    Article  CAS  PubMed  Google Scholar 

  173. Bisbe J, Gatell JM, Puig J, Mallolas J, Martinez JA, Jimenez de Anta MT, Soriano E (1988) Pseudomonas aeruginosa bacteremia: univariate and multivariate analyses of factors influencing the prognosis in 133 episodes. Rev Infect Dis 10(3):629–635

    Article  CAS  PubMed  Google Scholar 

  174. Garcia-Rodriguez JA, Garcia-Garcia MI, Garcia-Sanchez E, Garcia-Sanchez JE, Munoz Bellido JL (1989) In vitro activity of 16 antimicrobial agents against Helicobacter (Campylobacter) pylori. Enferm Infecc Microbiol Clin 7(10):544–546

    CAS  PubMed  Google Scholar 

  175. Glupczynski Y, Delmee M, Bruck C, Labbe M, Avesani V, Burette A (1988) Susceptibility of clinical isolates of Campylobacter pylori to 24 antimicrobial and anti-ulcer agents. Eur J Epidemiol 4(2):154–157

    Article  CAS  PubMed  Google Scholar 

  176. Doern GV, Morse SA (1980) Branhamella (Neisseria) catarrhalis: criteria for laboratory identification. J Clin Microbiol 11(2):193–195

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Muyembe T, Vandepitte J, Desmyter J (1973) Natural colistin resistance in Edwardsiella tarda. Antimicrob Agents Chemother 4(5):521–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Laffineur K, Janssens M, Charlier J, Avesani V, Wauters G, Delmee M (2002) Biochemical and susceptibility tests useful for identification of nonfermenting gram-negative rods. J Clin Microbiol 40(3):1085–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dance DA, Wuthiekanun V, Naigowit P, White NJ (1989) Identification of Pseudomonas pseudomallei in clinical practice: use of simple screening tests and API 20NE. J Clin Pathol 42(6):645–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Finland M, Garner C, Wilcox C, Sabath LD (1976) Susceptibility of beta-hemolytic streptococci to 65 antibacterial agents. Antimicrob Agents Chemother 9(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Finland M, Garner C, Wilcox C, Sabath LD (1976) Susceptibility of pneumococci and Haemophilus influenzae to antibacterial agents. Antimicrob Agents Chemother 9(2):274–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hoeprich PD (1970) The polymyxins. Med Clin North Am 54(5):1257–1265

    Article  CAS  PubMed  Google Scholar 

  183. Clinical and Laboratory Standards Institute (CLSI) (2005) Performance standards for antimicrobial susceptibility testing: fifteenth informational supplement (M100-S15). CLSI, Wayne

    Google Scholar 

  184. Eickhoff TC, Finland M (1965) Polymyxin B and colistin: In vitro activity against Pseudomonas aeruginosa. Am J Med Sci 249:172–174

    CAS  PubMed  Google Scholar 

  185. Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K, Johnson DW (2001) A simple method for the assay of colistin in human plasma, using pre-column derivatization with 9-fluorenylmethyl chloroformate in solid-phase extraction cartridges and reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 761(2):167–175

    Article  CAS  PubMed  Google Scholar 

  186. Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K, Valentine J (2002) Simple method for assaying colistin methanesulfonate in plasma and urine using high-performance liquid chromatography. Antimicrob Agents Chemother 46(10):3304–3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K (2003) Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob Agents Chemother 47(5):1766–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Landman D, Urban C, Backer M, Kelly P, Shah N, Babu E, Bratu S, Quale J (2010) Susceptibility profiles, molecular epidemiology, and detection of KPC-producing Escherichia coli isolates from the New York City vicinity. J Clin Microbiol 48(12):4604–4607. https://doi.org/10.1128/JCM.01143-10

    Article  PubMed  PubMed Central  Google Scholar 

  189. Quale J, Shah N, Kelly P, Babu E, Backer M, Rosas-Garcia G, Salamera J, George A, Bratu S, Landman D (2012) Activity of polymyxin B and the novel polymyxin analogue CB-182,804 against contemporary Gram-negative pathogens in New York city. Microb Drug Resist 18(2):132–136. https://doi.org/10.1089/mdr.2011.0163

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kade D. Roberts or Phillip J. Bergen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velkov, T., Thompson, P.E., Azad, M.A.K., Roberts, K.D., Bergen, P.J. (2019). History, Chemistry and Antibacterial Spectrum. In: Li, J., Nation, R., Kaye, K. (eds) Polymyxin Antibiotics: From Laboratory Bench to Bedside. Advances in Experimental Medicine and Biology, vol 1145. Springer, Cham. https://doi.org/10.1007/978-3-030-16373-0_3

Download citation

Publish with us

Policies and ethics