Skip to main content

Nanomaterials and Their Applications in Bioimaging

  • Chapter
  • First Online:
Plant Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanomaterials have shown great potential in bioimaging, drug delivery, and targeted cancer therapies owing to their physicochemical properties and good biocompatibility. Among various clinical areas, bioimaging techniques based on nanomaterials have advanced very quickly with the development of nanoparticles with different functionalizations.

Modification/functionalization/conjugation makes nanomaterial a flawless candidate with controlled physicochemical, pharmacokinetic, pharmacological, and toxicological properties. Inorganic nanomaterials including gold nanoparticles, silica nanoparticles, magnetic nanoparticles, quantum dots, carbon nanotubes, fullerenes, and graphene become one of the most active research fields in biotechnology, biochemistry, and nano-biomedicine.

In this article, we summarized recent progress on various inorganic nanomaterials, including the background, synthesis, modification as well as their applications in the field of bioimaging with special reference to different bioimaging techniques such as magnetic resonance imaging (MRI), X-ray computed tomography (CT), positron emission tomography (PET), ultrasound imaging (USI), fluorescence imaging (FI), and photoacoustic imaging (PAI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam K, Mohamed AA, Prasad R (2019) Magnetic nanostructures: environmental and agricultural applications. Springer International Publishing (ISBN 978-3-030-16438-6) https://www.springer.com/gp/book/9783030164386

  • Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99(20):12617–12621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asl HM (2017) Applications of nanoparticles in magnetic resonance imaging: a comprehensive review. Asian J Pharm 11:S7–S13

    Google Scholar 

  • Assimakopoulos A, Polyzoidis K, Sioka C (2014) Positron emission tomography imaging in gliomas. Neuroimmunol Neuroinflammation 1(3):107

    Article  Google Scholar 

  • Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Synthesis of graphene. Int Nano Lett 6(2):65–83

    Article  CAS  Google Scholar 

  • Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764

    Article  CAS  PubMed  Google Scholar 

  • Blaszkiewicz P (1994) Synthesis of water-soluble ionic and nonionic iodinated X-Ray contrast-media. Invest Radiol 29:S51–S53

    Article  CAS  PubMed  Google Scholar 

  • Boretti A, Castelletto S (2016) Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks. Methods X 3:297–306

    Google Scholar 

  • Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D, Tsoukalas C (2012) Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem 12:2694–2702

    Article  CAS  PubMed  Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  • Cai WB, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676

    Article  CAS  PubMed  Google Scholar 

  • Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon KH (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42(12):797–806

    Article  CAS  PubMed  Google Scholar 

  • Carvalho A, Martins MBF, Corvo ML, Feio G (2014) Enhanced contrast efficiency in MRI by PEGylated magnetoliposomes loaded with PEGylated SPION: effect of SPION coating and micro-environment. Mater Sci Eng C 43:521–526

    Article  CAS  Google Scholar 

  • Carvalho A, Gonçalves MC, Corvo ML, Martins MBF (2017) Development of new contrast agents for imaging function and metabolism by magnetic resonance imaging. Magn Reson Insights. https://doi.org/10.1177/1178623X17722134

    Article  Google Scholar 

  • Chanda N, Shukla R, Zambre A, Mekapothula S, Kulkarni RR, Katti K, Bhattacharyya K, Fent GM, Casteel SW, Boote EJ, Viator JA (2011) An effective strategy for the synthesis of biocompatible gold nanoparticles using cinnamon phytochemicals for phantom CT imaging and photoacoustic detection of cancerous cells. Pharm Res 28(2):279–291

    Article  CAS  PubMed  Google Scholar 

  • Cheheltani R, Ezzibdeh RM, Chhour P, Pulaparthi K, Kim J, Jurcova M, Hsu JC, Blundell C, Litt HI, Ferrari VA, Allcock R (2016) Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials 102:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherukula K, ManickavasagamLekshmi K, Uthaman S, Cho K, Cho CS, Park IK (2016) Multifunctionalinorganic nanoparticles: recent progress in thermal therapy and imaging. Nanomaterials 6(4):76

    Article  PubMed Central  CAS  Google Scholar 

  • Chhour P, Naha PC, O’Neill SM, Litt HI, Reilly MP, Ferrari VA, Cormode DP (2016) Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials 87:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71

    Article  CAS  Google Scholar 

  • Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc 132(38):13270–13278

    Article  CAS  PubMed  Google Scholar 

  • Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK (2015) Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine 10(2):321–341

    Article  CAS  PubMed  Google Scholar 

  • Contado C, Ravani L, Passarella M (2013) Size characterization by sedimentation field flow fractionation of silica particles used as food additives. Anal Chim Acta 788:183–192

    Article  CAS  PubMed  Google Scholar 

  • Conversano F, Pisani P, Casciaro E, di Paola M, Leporatti S, Franchini R, Quarta A, Gigli G, Casciaro S (2016) Automatic echographic detection of halloysite clay nanotubes in a low concentration range. Nanomaterials 6:66

    Article  PubMed Central  CAS  Google Scholar 

  • Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, Fuster V, Fisher EA, Mulder WJ, Proksa R, Fayad ZA (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256(3):774–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9(1):37–52

    Article  CAS  PubMed  Google Scholar 

  • Crippa S, Salgarello M, Laiti S, Partelli S, Castelli P, Spinelli AE, Tamburrino D, Zamboni G, Falconi M (2014) The role of 18fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer. Dig Liver Dis 46(8):744–749

    Article  PubMed  Google Scholar 

  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779

    Article  CAS  PubMed  Google Scholar 

  • Galperin A, Margel D, Baniel J, Dank G, Biton H, Margel S (2007) Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications. Biomaterials 28(30):4461–4468

    Article  CAS  PubMed  Google Scholar 

  • Gao XH, Cui YY, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969

    Article  CAS  PubMed  Google Scholar 

  • Gao XL, Chen J, Chen JY, Wu B, Chen H, Jiang X (2008) Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjug Chem 19(11):2189–2195

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Wang G, Qin Z, Wang X, Zhao G, Ma Q, Zhu L (2017) Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials 112:324–335

    Article  CAS  PubMed  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  • Grimmer T, Wutz C, Alexopoulos P, Drzezga A, Förster S, Förstl H, Goldhardt O, Ortner M, Sorg C, Kurz A (2016) Visual versus fully automated analyses of 18F-FDG and amyloid PET for prediction of dementia due to Alzheimer disease in mild cognitive impairment. J Nucl Med 57(2):204–207

    Article  CAS  PubMed  Google Scholar 

  • Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309–N315

    Article  CAS  PubMed  Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Zhang B, Zheng C, Ji R, Ren X, Guo F, Sun S, Shi J, Zhang H, Zhang Z, Wang L (2015) The tumor-targeting core–shell structured DTX-loaded PLGA@ Au nanoparticles for chemo-photothermal therapy and X-ray imaging. J Control Release 220:545–555

    Article  CAS  PubMed  Google Scholar 

  • Herholz K, Carter SF, Jones M (2007) Positron emission tomography imaging in dementia. Br J Radiol 80(2):S160–S167

    Article  PubMed  Google Scholar 

  • Hildebrandt N (2011) Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano 5(7):5286–5290

    Article  CAS  PubMed  Google Scholar 

  • Horie S, Watanabe Y, Ono M, Mori S, Kodama T (2011) Evaluation of antitumor effects following tumor necrosis factor-α gene delivery using nanobubbles and ultrasound. Cancer Sci 102(11):2082–2089

    Article  CAS  PubMed  Google Scholar 

  • Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Yoshioka Y, Fujii F, Komai Y, Seki J, Seiyama A (2008) Gd3+−functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chem Commun 44:5764–5766

    Article  CAS  Google Scholar 

  • Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821

    Article  CAS  PubMed  Google Scholar 

  • Jun YW, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magneticresonance imaging. Angew Chem Int Ed 47(28):5122–5135

    Article  CAS  Google Scholar 

  • Karmani L, Labar D, Valembois V, Bouchat V, Nagaswaran PG, Bol A, Gillart J, Levêque P, Bouzin C, Bonifazi D, Michiels C (2013) Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol Imaging 8(5):402–408

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Inui Y, Nakamura A, Ito K (2016) Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev 30:73–84

    Article  PubMed  Google Scholar 

  • Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4:688–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4(10):627–633

    Article  CAS  PubMed  Google Scholar 

  • Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347(6291):354

    Article  Google Scholar 

  • Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH (2017) Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 46(1):158–196

    Article  CAS  PubMed  Google Scholar 

  • Lai SM, Tsai TY, Hsu CY, Tsai JL, Liao MY, Lai PS (2012) Bifunctional silica-coated superparamagnetic FePt nanoparticles for fluorescence/MR dual imaging. J Nanomater 2012:5

    Article  CAS  Google Scholar 

  • Lanza GM, Wallace KD, Scott MJ, Cacheris WP, Abendschein DR, Christy DH, Sharkey AM, Miller JG, Gaffney PJ, Wickline SA (1996) A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94(12):3334–3340

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Cho HR, Oh MH, Lee SH, Kim K, Kim BH, Shin K, Ahn TY, Choi JW, Kim YW, Choi SH (2012) Multifunctional Fe3O4/TaO x Core/Shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J Am Chem Soc 134(25):10309–10312

    Article  CAS  PubMed  Google Scholar 

  • Li J, Cheng F, Huang H, Li L, Zhu JJ (2015) Nanomaterial-based activatable imaging probes: from design to biological applications. Chem Soc Rev 44(21):7855–7880

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Zhou Q, Wang M, Zhu Y, Wu Q, Yang X (2015) Water-soluble l-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomed 10:2325

    Article  CAS  Google Scholar 

  • Lin J, Huang Y, Huang P (2018) Graphene-based nanomaterials in bioimaging. In: Biomedical applications of functionalized nanomaterials. Elsevier, pp 247–287

    Google Scholar 

  • Liu Z, Lammers T, Ehling J, Fokong S, Bornemann J, Kiessling F, Gätjens J (2011) Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32(26):6155–6163

    Article  CAS  PubMed  Google Scholar 

  • Ma DW, Kim JH, Jeon TJ, Lee YC, Yun M, Youn YH, Park H, Lee SI (2013) F-fluorodeoxyglucose positron emission tomography-computed tomography for the evaluation of bone metastasis in patients with gastric cancer. Dig Liver Dis 45(9):769–775

    Article  CAS  PubMed  Google Scholar 

  • Mahan MM, Doiron AL (2018) Gold nanoparticles as X-ray, CT, and multimodal imaging contrast agents: formulation, targeting, and methodology. J Nanomater. https://doi.org/10.1155/2018/5837276

    Article  CAS  Google Scholar 

  • Marsh JN, Hall CS, Scott MJ, Fuhrhop RW, Gaffney PJ, Wickline SA, Lanza GM (2002) Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model. IEEE Trans Ultrason Ferroelectr Freq Control 49(1):29–38

    Article  PubMed  Google Scholar 

  • Martínez-González R, Estelrich J, Busquets MA (2016) Liposomes loaded with hydrophobic iron oxide nanoparticles: suitable T2 contrast agents for MRI. Int J Mol Sci 17(8):1209

    Article  PubMed Central  CAS  Google Scholar 

  • Martins MBA, Corvo ML, Marcelino P, Marinho HS, Feio G, Carvalho A (2014) New long circulating magnetoliposomes as contrast agents for detection of ischemia-reperfusion injuries by MRI. Nanomed Nanotechnol 10(1):207–214

    Article  CAS  Google Scholar 

  • Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun’ko YK (2017) Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 5(33):6701–6727

    Article  CAS  PubMed  Google Scholar 

  • Mattrey RF, Scheible FW, Gosink BB, Leopold GR, Long DM, Higgins CB (1982) Perfluoroctylbromide: aliver/spleen-specific and tumor-imaging ultrasound contrast material. Radiology 145(3):759–762

    Article  CAS  PubMed  Google Scholar 

  • McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, Rey D, Mendenhall J, Batt CA, Njardarson JT, Scheinberg DA (2007) PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One 2(9):e907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meltzer CC, Becker JT, Price JC, Moses-Kolko E (2003) Positron emission tomography imaging of the aging brain. Neuroimaging Clin 13(4):759–767

    Article  Google Scholar 

  • Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17(4):905–911

    Article  CAS  PubMed  Google Scholar 

  • Mosconi L, Berti V, Guyara-Quinn C, McHugh P, Petrongolo G, Osorio RS, Connaughty C, Pupi A, Vallabhajosula S, Isaacson RS, de Leon MJ (2017) Perimenopause and emergence of an Alzheimer’s bioenergetic phenotype in brain and periphery. PLoS One 12(10):e0185926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557

    Article  Google Scholar 

  • Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  • Neumaier CE, Baio G, Ferrini S, Corte G, Daga A (2008) MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research. Tumori J 94(2):226–233

    Article  Google Scholar 

  • Niccolini F, Su P, Politis M (2015) PET in multiple sclerosis. Clin Nucl Med 40(1):e46–e52

    Article  PubMed  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  CAS  Google Scholar 

  • Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33

    Article  CAS  PubMed  Google Scholar 

  • Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core− shell fluorescent silica nanoparticles. Nano Lett 5(1):113–117

    Article  CAS  PubMed  Google Scholar 

  • Pan D, Schirra CO, Senpan A, Schmieder AH, Stacy AJ, Roessl E, Thran A, Wickline SA, Proska R, Lanza GM (2012) An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS nano 6(4):3364–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed 4:261–275

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Campaña C, Gómez-Vallejo V, Martin A, San Sebastián E, Moya SE, Reese T, Ziolo RF, Llop J (2012) Tracing nanoparticles in vivo: a new general synthesis of positron emitting metal oxide nanoparticles by proton beam activation. Analyst 137:4902–4906

    Article  PubMed  CAS  Google Scholar 

  • Politis M, Piccini P (2012) Positron emission tomography imaging in neurological disorders. J Neurol 259(9):1769–1780

    Article  PubMed  Google Scholar 

  • Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  CAS  PubMed  Google Scholar 

  • Riola-Parada C, García-Cañamaque L, Pérez-Dueñas V, Garcerant-Tafur M, Carreras-Delgado JL (2016) Simultaneous PET/MRI vs. PET/CT in oncology. A systematic review. Revista Española de Medicina Nucleare Imagen Molecular (English Edition) 35(5):306–312

    CAS  Google Scholar 

  • Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS, Scheinberg DA, McDevitt MR (2010) Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomedicine 5:783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze E, Ferrucci JT, Poss K, Lapointe L, Bogdanova A, Weissleder R (1995) Cellular uptake and trafficking of a prototypical magnetic iron-oxide label in-vitro. Invest Radiol 30(10):604–610

    Article  CAS  PubMed  Google Scholar 

  • Shevtsov M, Nikolaev B, Marchenko Y, Yakovleva L, Skvortsov N, Mazur A, Tolstoy P, Ryzhov V, Multhoff G (2018) Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomed 13:1471

    Article  CAS  Google Scholar 

  • Shi XY, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Landmark KJ, Baker Jr (2008) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv Mater 20(9):1671–1678

    Article  CAS  Google Scholar 

  • Shi P, Qu K, Wang J, Li M, Ren J, Qu X (2012) pH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chem Commun 48(61):7640–7642

    Article  CAS  Google Scholar 

  • Si-Mohamed S, Cormode DP, Bar-Ness D, Sigovan M, Naha PC, Langlois JB, Chalabreysse L, Coulon P, Blevis I, Roessl E, Erhard K (2017) Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution in vivo. Nanoscale 9(46):18246–18257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szyszko TA, Cook GJR (2017) PET/CT and PET/MRI in head and neck malignancy. Clin Radiol. https://doi.org/10.1016/j.crad.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  • Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67(3):1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Park IK, Jeong YY (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14:15910–15930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorek DL, Czupryna J, Chen AK, Tsourkas A (2008) Molecular imaging of cancer with superparamagnetic iron-oxide nanoparticles. In: Cancer imaging. Academic press, pp 85–95.

    Google Scholar 

  • Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 40(9):846–853

    Article  CAS  PubMed  Google Scholar 

  • van Schooneveld MM, Cormode DP, Koole R, van Wijngaarden JT, Calcagno C, Skajaa T, Hilhorst J, Hart DCT, Fayad ZA, Mulder WJ, Meijerink A (2010) A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. Contrast Media Mol Imaging 5(4):231–236

    Article  PubMed  CAS  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  CAS  PubMed  Google Scholar 

  • Vlasceanu G, Grumezescu AM, Gheorghe I, Chifiriuc MC, Holban AM (2017) Quantum dots for bioimaging and therapeutic applications. In: Nanostructures for novel therapy. Elsevier, pp 497–515

    Google Scholar 

  • Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmüller A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98(31):7665–7673

    Article  CAS  Google Scholar 

  • Wang SC, Xie Q, Lv WF (2014) Positron emission tomography/computed tomography imaging and rheumatoid arthritis. Int J Rheum Dis 17(3):248–255

    Article  PubMed  Google Scholar 

  • Wang G, Zhang F, Tian R, Zhang L, Fu G, Yang L, Zhu L (2016) Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy. ACS Appl Mater Interfaces 8(8):5608–5617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters EA, Wickline SA (2008) Contrast agents for MRI. Basic Res Cardiol 103(2):114–121

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168–1171

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R, Imhof H (2007) Molecular imaging – a new focal point of radiology. Der Radiologe 47(1):6–7

    Article  CAS  PubMed  Google Scholar 

  • Wickline SA, Hughes M, Ngo FC, Hall CS, Marsh JN, Brown PA, Allen JS, McLean MD, Scott MJ, Fuhrhop RW, Lanza GM (2002) Blood contrast enhancement with a novel, non-gaseous nanoparticle contrast agent. Acad Radiol 9(suppl 2):S290–S293

    Article  PubMed  Google Scholar 

  • Wu SH, Mou CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Huang L, Jiang MS, Jiang H (2014) Contrast agents for photoacoustic and thermoacoustic imaging: a review. Int J Mol Sci 15(12):23616–23639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C, Li D, Wang L, Guan X, Tian Y, Yang H, Li S, Liu Y (2017) Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics. Acta Biomater 53:631–642

    Article  CAS  PubMed  Google Scholar 

  • Wunderbaldinger P, Josephson L, Bremer C, Moore A, Weissleder R (2002a) Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn Reson Med 47(2):292–297

    Article  PubMed  Google Scholar 

  • Wunderbaldinger P, Josephson L, Weissleder R (2002b) Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol 9:S304–S306

    Article  PubMed  Google Scholar 

  • Xie H, Wang ZJ, Bao A, Goins B, Phillips WT (2010) In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm 395:324–330

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L (2016) Funcional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 103:219–228

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Zhao J, Conti PS, Chen K (2014) Radiolabeled Nanoparticles for multimodality tumorimaging. Theranostics 4:290–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue S, Wang Y, Wang M, Zhang L, Du X, Gu H, Zhang C (2014) Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Int J Nanomed 9:2527

    Google Scholar 

  • Yang H, Zhang J, Tian Q, Hu H, Fang Y, Wu H, Yang S (2010) One-pot synthesis of amphiphilic superparamagnetic Fe-Pt nanoparticles and magnetic resonance imaging in vitro. J Magn Magn Mater 322(8):973–977

    Article  CAS  Google Scholar 

  • Yang K, Wan J, Zhang S, Zhang Y, Lee ST (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522

    Article  CAS  PubMed  Google Scholar 

  • Yong KT (2009) Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology 20(1):015102

    Article  PubMed  CAS  Google Scholar 

  • Yu SB, Watson AD (1999) Metal-based X-ray contrast media. Chem Rev 99(9):2353–2377

    Article  CAS  PubMed  Google Scholar 

  • Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Yakub BTK, Gambhir SS (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562

    Article  PubMed  CAS  Google Scholar 

  • Zhang WH, Hu XX, Zhang XB (2016) Dye-doped fluorescent silica nanoparticles for live cell and in vivo bioimaging. Nanomaterials 6:81

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, R., Sethi, K., Singh, G. (2019). Nanomaterials and Their Applications in Bioimaging. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16379-2_15

Download citation

Publish with us

Policies and ethics