Skip to main content

Practical Review of Robotics in the Treatment of Chronic Impairment After Acquired Brain Injury

  • Chapter
  • First Online:
Acquired Brain Injury

Abstract

In the mid-1990s, robotic therapy emerged in U.S. rehabilitation hospitals for the treatment of upper and lower extremity weakness following acquired brain injury (ABI), especially from cerebrovascular accident (CVA or stroke). These early robotic devices were used primarily for stroke rehabilitation research. Since that time, several multicenter studies have demonstrated that robotic interventions are effective restorative tools for motor improvement, as robots take on the hard work of an intensive motor training experience. Importantly, robots will move a hemiparetic limb with consistent, intensive, repetitive, and programmable movement episodes. This training frees the therapist to focus on reincorporating the emerging new motor capacities of the affected limb into functional use. Robotic rehabilitation has consequently become a standard of care for the treatment of hemiparesis in cutting-edge physical and occupational therapy clinics throughout the United States and the world. With inevitable advance of technology, robots will become portable, targeted, and affordable, allowing for the integration of intensive robotic therapy in both the clinic and at home.

Why robots? Basic principles and benefits of robotic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, Z. (2014). Trans-spinal direct current stimulation alters muscle tone in mice with and without spinal cord injury with spasticity. Journal of Neuroscience, 34(5), 1701–1709.

    Article  Google Scholar 

  • Antelis, J. M., Montesano, L., Giralt, X., Casals, A., & Minguez, J. (2012). Detection of movements with attention or distraction to the motor task during robot-assisted passive movements of the upper limb. IEEE Engineering in Medicine and Biology Society, 2012, 6410–6413.

    Google Scholar 

  • Chang, J. L., Lin, R. Y., Saul, M., Koch, P. J., Krebs, H. I., & Volpe, B. T. (2017). Intensive seated robotic training of the ankle in patients with chronic stroke differentially improves gait. NeuroRehabilitation, 41(1), 61–68.

    Article  Google Scholar 

  • Cramer, S. C. (2018). Treatments to promote neural repair after stroke. Journal of Stroke, 20(1), 5–70.

    Article  Google Scholar 

  • Dayan, E., Censor, N., Buch, E. R., Sandrini, M., & Cohen, L. G. (2013). Noninvasive brain stimulation: From physiology to network dynamics and back. Nature Neuroscience, 16(7), 838–844.

    Article  Google Scholar 

  • Di Pino, G., Pellegrino, G., Assenza, G., Capone, F., Ferreri, F., Formica, D., … Di Lazzaro, V. (2014). Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nature Reviews. Neurology, 10(10), 597–608.

    Article  Google Scholar 

  • Dohle, C. I., Rykman, A., Chang, J., & Volpe, B. T. (2013). Pilot study of a robotic protocol to treat shoulder subluxation in patients with chronic stroke. Journal of Neuroengineering and Rehabilitation, 10, 88.

    Article  Google Scholar 

  • Duncan, P. W., Sullivan, K. J., Behrman, A. L., Azen, S. P., Wu, S. S., Nadeau, S. E., … LEAPS Investigative Team. (2011). Body-weight-supported treadmill rehabilitation after stroke. The New England Journal of Medicine, 364(21), 2026–2036.

    Article  Google Scholar 

  • Fritz, S., & Lusardi, M. (2009). White paper: Walking speed: The sixth vital sign. Journal of Geriatric Physical Therapy, 32(2), 46–49.

    Article  Google Scholar 

  • Hays, S. A. (2016). Enhancing rehabilitative therapies with vagus nerve stimulation. Neurotherapeutics, 13(2), 382–394.

    Article  Google Scholar 

  • Hogan, N., Krebs, H. I., Rohrer, B., Palazzolo, J. J., Dipietro, L., Fasoli, S. E., … Volpe, B. T. (2006). Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. Journal of Rehabilitation Research and Development, 43(5), 605–618.

    Article  Google Scholar 

  • Krebs, H. I., Ferraro, M., Buerger, S. P., Newbery, M. J., Makiyama, A., Sandmann, M., … Hogan, N. (2004). Rehabilitation robotics: Pilot trial of a spatial extension for MIT-Manus. Journal of Neuroengineering and Rehabilitation, 1(1), 5.

    Article  Google Scholar 

  • Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., & Hogan, N. (2007). Robot-aided neurorehabilitation: A robot for wrist rehabilitation. IEEE Engineering in Medicine and Biology Society, 15(3), 327–335.

    Google Scholar 

  • Lang, C. E., Macdonald, J. R., Reisman, D. S., Boyd, L., Jacobson Kimberley, T., Schindler-Ivens, S. M., … Scheets, P. L. (2009). Observation of amounts of movement practice provided during stroke rehabilitation. Archives of Physical Medicine and Rehabilitation, 90(10), 1692–1698.

    Article  Google Scholar 

  • Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., … Peduzzi, P. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19), 1772–1783.

    Article  Google Scholar 

  • Lo, K., Stephenson, M., & Lockwood, C. (2017). Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: A systematic review. JBI Database of Systemic Reviews and Implementation Reports, 15(12), 3049–3091.

    Article  Google Scholar 

  • Lundquist, C. B., & Maribo, T. (2017). The Fugl-Meyer assessment of the upper extremity: Reliability, responsiveness and validity of the Danish version. Disability and Rehabilitation, 39(9), 934–939.

    Article  Google Scholar 

  • Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., & Leonhardt, S. (2014). A survey on robotic devices for upper limb rehabilitation. Journal of Neuroengineering and Rehabilitation, 11, 3.

    Article  Google Scholar 

  • McConnell, A., Moioli, R., Brasil, F., Vallejo, M., Corne, D., Vargas, P., & Stokes, A. (2017). Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke. Journal of Rehabilitation Medicine, 49(6), 449–460.

    Article  Google Scholar 

  • Mehrholz, J., Pohl, M., Platz, T., Kugler, J., & Elsner, B. (2015). Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. The Cochrane Datbase of Systematic Reviews, (11), CD006876.

    Google Scholar 

  • Mehrholz, J., Thomas, S., Werner, C., Kugler, J., Pohl, M., & Elsner, B. (2017). Electromechanical-assisted training for walking after stroke. The Cochrane Database of Systematic Reviews, (5), CD006185.

    Google Scholar 

  • Nudo, R. J., Wise, B. M., SiFuentes, F., & Miliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272(5269), 1791–1794.

    Article  Google Scholar 

  • Poli, P., Morone, G., Rosati, G., & Masiero, S. (2013). Robotic technologies and rehabilitation: New tools for stroke patients’ therapy. Biomedical Research International, 2013, 153872.

    Article  Google Scholar 

  • Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Safety of TMS Consensus Group. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 2008–2039.

    Article  Google Scholar 

  • Volpe, B. T., Huerta, P. T., Zipse, J. L., Rykman, A., Edwards, D., Dipietro, L., … Krebs, H. I. (2009). Robotic devices as therapeutic and diagnostic tools for stroke recovery. Archives of Neurology, 66(9), 1086–1090.

    Article  Google Scholar 

  • Volpe, B. T., Lynch, D., Rykman-Berland, A., Ferraro, M., Galgano, M., Hogan, N., & Krebs, H. I. (2008). Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabilitation and Neural Repair, 22(3), 305–310.

    Article  Google Scholar 

  • Wagner, T. H., Lo, A. C., Peduzzi, P., Bravata, D. M., Huang, G. D., Krebs, H. I., … Guarino, P. D. (2011). An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke. Stroke, 42(9), 2630–2632.

    Article  Google Scholar 

  • Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., … Zorowitz, R. D. (2016). Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 47(6), e98–e169.

    Article  Google Scholar 

  • Wu, X., Guarino, P., Lo, A. C., Peduzzi, P., & Wininger, M. (2016). Long term effectiveness of intensive therapy in chronic stroke. Neurorehabilitation and Neural Repair, 30(6), 583–590.

    Article  Google Scholar 

  • Yue, Z., Zhang, X., & Wang, J. (2017). Hand rehabilitation robotics on poststroke motor recovery. Behavioural Neurology, 2017, 3908135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna L. Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chang, J.L., Saul, M., Volpe, B.T. (2019). Practical Review of Robotics in the Treatment of Chronic Impairment After Acquired Brain Injury. In: Elbaum, J. (eds) Acquired Brain Injury. Springer, Cham. https://doi.org/10.1007/978-3-030-16613-7_5

Download citation

Publish with us

Policies and ethics