Skip to main content

Statistical Research of Efficiency of Approximation Algorithms for Planning Processes Automation Problems

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education II (ICCSEEA 2019)

Abstract

We study the efficiency of polynomial approximation algorithms for solving NP-hard scheduling problems to minimize total tardiness and total weighted tardiness on one machine. The algorithms are based on PSC-algorithms for the considered problems given in [Zgurovsky & Pavlov, Combinatorial Optimization Problems in Planning and Decision Making: Theory and Applications, Springer, 2019]. They were developed by excluding procedures related to exponential enumeration. The approximation algorithms have a polynomial complexity and can solve problems of any practical dimension. We give a method for determining the maximum possible deviation of the approximate solution of the total tardiness problem from the optimum for each individual problem instance. We present experimental data on the solving time and the actual percentage of the deviation of the functional value from the optimum. The deviation was less than 5% after the execution of the approximate algorithm for the weighted tardiness problem and less than 2.4% for the total tardiness problem. This confirms the high efficiency of the approximation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26580-3

  2. Heydari, M., Hosseini, S.M., Gholamian, S.A.: Optimal placement and sizing of capacitor and distributed generation with harmonic and resonance considerations using discrete particle swarm optimization. Int. J. Intell. Syst. Appl. (IJISA) 5(7), 42–49 (2013). https://doi.org/10.5815/ijisa.2013.07.06

    Article  Google Scholar 

  3. Wang, F., Rao, Y., Wang, F., Hou, Y.: Design and application of a new hybrid heuristic algorithm for flow shop scheduling. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 3(2), 41–49 (2011). https://doi.org/10.5815/ijcnis.2011.02.06

    Article  Google Scholar 

  4. Cai, Y.: Artificial fish school algorithm applied in a combinatorial optimization problem. Int. J. Intell. Syst. Appl. (IJISA) 2(1), 37–43 (2010). https://doi.org/10.5815/ijisa.2010.01.06

    Article  Google Scholar 

  5. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

  6. Soltani, N., Soleimani, B., Barekatain, B.: Heuristic algorithms for task scheduling in cloud computing: a survey. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(8), 16–22 (2017). https://doi.org/10.5815/ijcnis.2017.08.03

    Article  Google Scholar 

  7. Garg, R., Singh, A.K.: Enhancing the discrete particle swarm optimization based workflow grid scheduling using hierarchical structure. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 5(6), 18–26 (2013). https://doi.org/10.5815/ijcnis.2013.06.03

    Article  Google Scholar 

  8. Mishra, M.K., Patel, Y.S., Rout, Y., Mund, G.B.: A survey on scheduling heuristics in grid computing environment. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 6(10), 57–83 (2014). https://doi.org/10.5815/ijmecs.2014.10.08

    Article  Google Scholar 

  9. Sajedi, H., Rabiee, M.: A metaheuristic algorithm for job scheduling in grid computing. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 6(5), 52–59 (2014). https://doi.org/10.5815/ijmecs.2014.05.07

    Article  Google Scholar 

  10. Hwang, K., Dongarra, J., Fox, G.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann, Burlington (2012)

    Google Scholar 

  11. Brucker, P., Knust, S.: Complex Scheduling. GOR-Publications Series, 2nd edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23929-8

  12. Zgurovsky, M.Z., Pavlov, A.A.: The total weighted tardiness of tasks minimization on a single machine. In: Combinatorial Optimization Problems in Planning and Decision Making: Theory and Applications, 1st edn. Studies in Systems, Decision and Control, vol. 173, pp. 107–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98977-8_4

  13. Zgurovsky, M.Z., Pavlov, A.A.: The total earliness/tardiness minimization on a single machine with arbitrary due dates. In: Combinatorial Optimization Problems in Planning and Decision Making: Theory and Applications, 1st edn. Studies in Systems, Decision and Control, vol. 173, pp. 219–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98977-8_5

  14. Zgurovsky, M.Z., Pavlov, A.A.: Algorithms and software of the four-level model of planning and decision making. In: Combinatorial Optimization Problems in Planning and Decision Making: Theory and Applications, 1st edn. Studies in Systems, Decision and Control, vol. 173, pp. 407–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98977-8_9

  15. Pavlov, A.A., Khalus, E.A., Borysenko, I.V.: Planning automation in discrete systems with a given structure of technological processes. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) Advances in Computer Science for Engineering and Education, ICCSEEA 2018, Advances in Intelligent Systems and Computing, vol. 754, pp. 177–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91008-6_18

  16. Tanaka, S., Fujikuma, S., Araki, M.: An exact algorithm for single-machine scheduling without machine idle time. J. of Sched. 12(6), 575–593 (2009). https://doi.org/10.1007/s10951-008-0093-5

    Article  MathSciNet  MATH  Google Scholar 

  17. Ding, J., Lü, Z., Edwin Cheng, T.C., Xu, L.: Breakout dynasearch for the single-machine total weighted tardiness problem. Comput. Ind. Eng. 98(C), 1–10 (2016). https://doi.org/10.1016/j.cie.2016.04.022

  18. Potts, C.N., Van Wassenhove, L.N.: Single machine tardiness sequencing heuristics. IIE Trans. 23(4), 346–354 (1991). https://doi.org/10.1080/07408179108963868

    Article  Google Scholar 

  19. Bilge, Ü., Kurtulan, M., Kıraç, F.: A tabu search algorithm for the single machine total weighted tardiness problem. Eur. J. of Oper. Res. 176(3), 1423–1435 (2007). https://doi.org/10.1016/j.ejor.2005.10.030

    Article  MathSciNet  MATH  Google Scholar 

  20. Geiger, M.J.: On heuristic search for the single machine total weighted tardiness problem – Some theoretical insights and their empirical verification. Eur. J. of Oper. Res. 207(3), 1235–1243 (2010). https://doi.org/10.1016/j.ejor.2010.06.031

    Article  MathSciNet  MATH  Google Scholar 

  21. Geiger, M.J.: New instances for the single machine total weighted tardiness problem. Research report RR-10-03-01. Helmut Schmidt Universität, Hamburg (2010)

    Google Scholar 

  22. Zgurovsky, M.Z., Pavlov, A.A.: Introduction. In: Combinatorial Optimization Problems in Planning and Decision Making: Theory and Applications. Studies in Systems, Decision and Control, vol. 173, pp. 1–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98977-8_1

  23. Pavlov, A.A., Misura, E.B., Melnikov, O.V., Mukha, I.P.: NP-hard scheduling problems in planning process automation in discrete systems of certain classes. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol. 754, pp. 429–436. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91008-6_43

  24. Tanaka, S., Fujikuma, S., Araki, M.: OR-library: weighted tardiness (2013). https://sites.google.com/site/shunjitanaka/sips/benchmark-results-sips. Accessed 08 Nov 2018

  25. Kara, B.Y.: OR-library: total tardiness (2001). http://bkara.bilkent.edu.tr/start.html. Accessed 08 Nov 2018

  26. Fisher, M.L.: A dual algorithm for the one machine scheduling problem. Math. Program. 11(1), 229–251 (1976). https://doi.org/10.1007/BF01580393

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Anatolievich Pavlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavlov, A.A., Misura, E.B., Melnikov, O.V., Mukha, I.P., Lishchuk, K.I. (2020). Statistical Research of Efficiency of Approximation Algorithms for Planning Processes Automation Problems. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-030-16621-2_37

Download citation

Publish with us

Policies and ethics