Skip to main content

Size/Accuracy Trade-Off in Convolutional Neural Networks: An Evolutionary Approach

  • Conference paper
  • First Online:
Recent Advances in Big Data and Deep Learning (INNSBDDL 2019)

Part of the book series: Proceedings of the International Neural Networks Society ((INNS,volume 1))

Included in the following conference series:

Abstract

In recent years, the shift from hand-crafted design of Convolutional Neural Networks (CNN’s) to an automatic approach (AutoML) has garnered much attention. However, most of this work has been concentrated on generating state of the art (SOTA) architectures that set new standards of accuracy. In this paper, we use the NSGA-II algorithm for multi-objective optimization to optimize the size/accuracy trade-off in CNN’s. This approach is inspired by the need for simple, effective, and mobile-sized architectures which can easily be re-trained on any datasets. This optimization is carried out using a Grammatical Evolution approach, which, implemented alongside NSGA-II, automatically generates valid network topologies which can best optimize the size/accuracy trade-off. Furthermore, we investigate how the algorithm responds to an increase in the size of the search space, moving from strictly topology optimization (number of layers, size of filter, number of kernels,etc.) and then expanding the search space to include possible variations in other hyper-parameters such as the type of optimizer, dropout rate, batch size, or learning rate, amongst others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NVIDIA-SMI GeForce GTX TITAN.

References

  1. Ahmadizar, F., Soltanian, K., AkhlaghianTab, F., Tsoulos, I.: Artificial neural network development by means of a novel combination of grammatical evolution and genetic algorithm. Eng. Appl. Artif. Intell. 39, 1–13 (2015)

    Article  Google Scholar 

  2. Assunçao, F., Lourenço, N., Machado, P., Ribeiro, B.: Automatic generation of neural networks with structured grammatical evolution. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1557–1564. IEEE (2017)

    Google Scholar 

  3. Assunçao, F., Lourenço, N., Machado, P., Ribeiro, B.: Towards the evolution of multi-layered neural networks: a dynamic structured grammatical evolution approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 393–400. ACM (2017)

    Google Scholar 

  4. Assunçao, F., Lourenço, N., Machado, P., Ribeiro, B.: DENSER: deep evolutionary network structured representation. arXiv preprint arXiv:1801.01563 (2018)

  5. Cheng, A.C., Dong, J.D., Hsu, C.H., Chang, S.H., Sun, M., Chang, S.C., Pan, J.Y., Chen, Y.T., Wei, W., Juan, D.C.: Searching toward pareto-optimal device-aware neural architectures. arXiv preprint arXiv:1808.09830 (2018)

  6. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)

    Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill, M.: PonyGE2: grammatical evolution in Python. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1194–1201. ACM (2017)

    Google Scholar 

  9. Gupta, S., Zhang, W., Wang, F.: Model accuracy and runtime tradeoff in distributed deep learning: a systematic study. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 171–180. IEEE (2016)

    Google Scholar 

  10. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.: Neural architecture search with bayesian optimisation and optimal transport. arXiv preprint arXiv:1802.07191 (2018)

  11. Kim, Y.H., Reddy, B., Yun, S., Seo, C.: NEMO: neuro-evolution with multiobjective optimization of deep neural network for speed and accuracy. In: ICML 2017, AutoML Workshop (2017)

    Google Scholar 

  12. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)

    Article  Google Scholar 

  13. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Lawrence, S., Giles, C.L., Tsoi, A.C.: What size neural network gives optimal generalization? Convergence properties of backpropagation. Technical report (1998)

    Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille, A., Huang, J., Murphy, K.: Progressive neural architecture search. arXiv preprint arXiv:1712.00559 (2017)

  18. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. arXiv preprint arXiv:1711.00436 (2017)

  19. Liu, L., Deng, J.: Dynamic deep neural networks: optimizing accuracy-efficiency trade-offs by selective execution. arXiv preprint arXiv:1701.00299 (2017)

  20. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks. arXiv preprint arXiv:1604.07269 (2016)

  21. Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N., et al.: Evolving deep neural networks. arxiv 2017. arXiv preprint arXiv:1703.00548

  22. Negrinho, R., Gordon, G.: DeepArchitect: automatically designing and training deep architectures. arXiv preprint arXiv:1704.08792 (2017)

  23. O’Neill, M., Ryan, C.: Grammatical evolution: Evolutionary automatic programming in a arbitrary language, volume 4 of genetic programming (2003)

    Google Scholar 

  24. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548 (2018)

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat, M., Adams, R.: Scalable Bayesian optimization using deep neural networks. In: International Conference on Machine Learning, pp. 2171–2180 (2015)

    Google Scholar 

  27. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  29. Tsoulos, I., Gavrilis, D., Glavas, E.: Neural network construction and training using grammatical evolution. Neurocomputing 72(1–3), 269–277 (2008)

    Article  Google Scholar 

  30. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer (2014)

    Google Scholar 

  31. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  32. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. arXiv preprint arXiv:1707.07012 2(6) (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaso Cetto .

Editor information

Editors and Affiliations

Appendix

Appendix

All mentioned appendices can be found in the full paper at www.tomasocetto.com.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cetto, T., Byrne, J., Xu, X., Moloney, D. (2020). Size/Accuracy Trade-Off in Convolutional Neural Networks: An Evolutionary Approach. In: Oneto, L., Navarin, N., Sperduti, A., Anguita, D. (eds) Recent Advances in Big Data and Deep Learning. INNSBDDL 2019. Proceedings of the International Neural Networks Society, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-16841-4_3

Download citation

Publish with us

Policies and ethics