Skip to main content

Inaccuracies Revealed During the Analysis of Propagation of Measurement Uncertainty Through a Closed-Loop Fractional-Order Control System

  • Conference paper
  • First Online:
Advances in Non-Integer Order Calculus and Its Applications (RRNR 2018)

Abstract

The purpose of an automatic control is to provide the best quality of the output signal of a controlled object. This quality is dependent on the type and tuning parameters of the used controller and on the properties of a transducer measuring the output signal. In this work, it was considered how the imperfections of the transducer propagate by the fractional-order (FO) control system. It was revealed that the assumed approximation method of FO derivation changes the trajectory of the output signal and also has an influence on the steady-state value. In turn, the measurement uncertainty estimation should take into account the analysis of the occurrence of oscillations, arising from drifts of imperfect components, that may exceed the permissible errors of the measuring transducer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Podlubny, I.: Fractional-order systems and PI\(^\lambda \)D\(^\mu \)-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999). https://doi.org/10.1109/9.739144

    Article  MathSciNet  MATH  Google Scholar 

  2. Podlubny, I.: Fractional-order systems and fractional-order controllers. Inst. Exp. Phys. Slovak Acad. Sci. Kosice 12(3), 1–18 (1994)

    Google Scholar 

  3. Dulău, M., Gligor, A., Dulău, T.M.: Fractional order controllers versus integer order controllers. Procedia Eng. 181, 538–545 (2017). https://doi.org/10.1016/j.proeng.2017.02.431

    Article  Google Scholar 

  4. Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCOM: a MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2(2), 51–62 (2011)

    Google Scholar 

  5. Xue, D., Chen, Y., Atherton, D.P.: Linear Feedback Control: Analysis and Design with MATLAB. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  6. Mozyrska, D., Ostalczyk, P., Wyrwas, M.: Stability conditions for fractional-order linear equations with delays. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 449–454 (2018). https://doi.org/10.24425/124261

    Article  Google Scholar 

  7. Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A.: Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems. In: 11th IEEE International Conference on Control and Automation (ICCA). IEEE (2014). https://doi.org/10.1109/icca.2014.6871094

  8. Krauze, P., Kasprzyk, J., Kozyra, A., Rzepecki, J.: Experimental analysis of vibration control algorithms applied for an off-road vehicle with magnetorheological dampers. J. Low Freq. Noise Vib. Act. Control 37(3), 619–639 (2018). https://doi.org/10.1177/1461348418756018

    Article  Google Scholar 

  9. Morris, A.S.: Measurement and Instrumentation Principles. Butterworth-Heinemann, Oxford (2001)

    Google Scholar 

  10. Frank, R.: Understanding Smart Sensors. Artech House Books, London (2013)

    Google Scholar 

  11. ISO, Geneva, Switzerland: Uncertainty of measurement – Part 3: guide to the expression of uncertainty in measurement (GUM:1995) (2008). http://www.iso.org/iso/catalogue_detail.htm?csnumber=50461

  12. Wiora, J., Wiora, A.: Measurement uncertainty evaluation of results provided by transducers working in control loops. In: 2018 23rd International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE (2018). https://doi.org/10.1109/mmar.2018.8486028

  13. Viola, J., Angel, L., Sebastian, J.M.: Design and robust performance evaluation of a fractional order PID controller applied to a DC motor. IEEE/CAA J. Autom. Sinica 4(2), 304–314 (2017). https://doi.org/10.1109/JAS.2017.7510535

    Article  MathSciNet  Google Scholar 

  14. Chen, Y., Petras, I., Xue, D.: Fractional order control - a tutorial. In: 2009 American Control Conference. IEEE (2009). https://doi.org/10.1109/acc.2009.5160719

  15. Ionescu, C., Machado, J.T., Keyser, R.D.: Fractional-order impulse response of the respiratory system. Comput. Math. Appl. 62(3), 845–854 (2011). https://doi.org/10.1016/j.camwa.2011.04.021. http://www.sciencedirect.com/science/article/pii/S0898122111003221. Special Issue on Advances in Fractional Differential Equations II

    Article  MATH  Google Scholar 

  16. Baranowski, J., Bauer, W., Zagorowska, M., Dziwinski, T., Piatek, P.: Time-domain Oustaloup approximation. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE (2015) https://doi.org/10.1109/mmar.2015.7283857

  17. Kawala-Janik, A., Zolubak, M., Bauer, W., Nazimek, B., Sobolewski, T., Martinek, R., Sowa, M., Pelc, M.: Implementation of non-integer order filtering for the purpose of disparities detection in beta frequencies - a pilot study. In: 2018 23rd International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE (2018) https://doi.org/10.1109/mmar.2018.8486113

  18. Merrikh-Bayat, F., Mirebrahimi, N., Khalili, M.R.: Discrete-time fractional-order PID controller: definition, tuning, digital realization and some applications. Int. J. Control Autom. Syst. 13(1), 81–90 (2014). https://doi.org/10.1007/s12555-013-0335-y

    Article  Google Scholar 

  19. Teodorescu, R., Blaabjerg, F., Liserre, M., Loh, P.: Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc. Electr. Power Appl. 153(5), 750 (2006). https://doi.org/10.1049/ip-epa:20060008

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Polish Ministry of Science and Higher Education (Grant No. 02/010/BK_18/0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Józef Wiora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wiora, J., Wiora, A. (2020). Inaccuracies Revealed During the Analysis of Propagation of Measurement Uncertainty Through a Closed-Loop Fractional-Order Control System. In: Malinowska, A., Mozyrska, D., Sajewski, Ł. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_16

Download citation

Publish with us

Policies and ethics