Skip to main content

Estimating the Probability of Earthquake Magnitude Between Mw = 4 and Mw = 5 for Turkey

  • Conference paper
  • First Online:
Information Technology in Disaster Risk Reduction (ITDRR 2017)

Abstract

Earthquake is a type of disaster that occurs suddenly in different magnitudes. When magnitude of an earthquake increases it is expected that the effects are much more. Earthquakes in varying magnitude between 4 Mw and 5 Mw cause uneasiness among the public even if they do not cause heavy damage. The aim of this study is to estimate the probability of an earthquake between 4.0 and 5.0 by using artificial neural network model. Monthly real data between 2006 and 2015 is used for the model. Data is analyzed in MATLAB neural network tool, then estimated output value obtained via analysis and output of test value is compared with regression equation. Besides, seasonal effects on magnitude of earthquake are examined. Results show that 90.51% of the earthquake probability between 4.0 and 5.0 can be estimated by using artificial neural network model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Florido, E., Aznarte, J., Morales-Esteban, A., Martínez-Álvarez, F.: Earthquake magnitude prediction based on artificial neural networks: a survey. Croatian Oper. Res. Rev. 7, 159–169 (2016)

    Google Scholar 

  2. Adeli, H., Panakkat, A.: A probabilistic neural network for earthquake magnitude prediction. Neural Netw. 22, 1018–1024 (2009)

    Article  Google Scholar 

  3. Stathopoulos, A., Dimitriou, L., Tsekeris, T.: Fuzzy modeling approach for combined forecasting of urban traffic flow. Comput-Aided Civil Infrastruct. Eng. 23, 521–535 (2008)

    Article  Google Scholar 

  4. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Temporal evolution of short term urban traffic flow: a non-linear dynamics approach. Comput.-Aided Civil Infrastruct. Eng. 23, 536–548 (2008)

    Article  Google Scholar 

  5. Cichocki, A., Zdunek, R.: Multilayer nonnegative matrix factorization using projected gradient approaches. Int. J. Neural Syst. 17, 431–446 (2007)

    Article  Google Scholar 

  6. Kuo, H.J., Chiu, H.W., Lee, C.N., Chen, T.T., Chang, C.C., Bien, M.Y.: Improvement in the prediction of ventilator weaning outcomes by an artificial neural network in a medical ICU. Respir. Care 60, 1560–1569 (2015)

    Article  Google Scholar 

  7. Andrei, C.L., Oancea, B., Nedelcu, M., Sinescu, R.D.: Predicting cardiovascular diseases prevalence using neural networks. Econ. Comput. Econ. Cybern. Stud. Res. 49, 73–84 (2015)

    Google Scholar 

  8. Buscema, P.M., Massini, B.G., Maurelli, G.: Artificial adaptive systems to predict the magnitude of earthquakes. Bollettino di Geofisica Teorica ed Applicata 56, 227–256 (2015)

    Google Scholar 

  9. Alves, E.I.: Earthquake forecasting using neural networks: results and future work. Nonlinear Dyn. 44, 341–349 (2006)

    Article  Google Scholar 

  10. Chattopadhyay, G., Chattopadhyay, S.: Dealing with the complexity of earthquake using neurocomputing techniques and estimating its magnitude with some low correlated predictors. Arab. J. Geosci. 2, 247–255 (2009)

    Article  Google Scholar 

  11. Gul, M., Guneri, A.F.: An artificial neural network-based earthquake casualty estimation model for Istanbul city. Nat. Hazards 84, 2163–2178 (2016)

    Article  Google Scholar 

  12. Murru, M., Akinci, A., Falcone, G., Pucci, S., Console, R., Parsons, T.: M ≥ 7earthquake rupture forecast and time-dependent probability for the Sea of Marmara region, Turkey. J. Geophys. Res.: Solid Earth 121, 2679–2707 (2016)

    Article  Google Scholar 

  13. Asencio-Cortes, G., Martínez-Álvarez, F., Morales-Esteban, A., Troncoso, A.: Medium – large earthquake magnitude prediction in Tokyo with artificial neural networks. Neural Comput. Appl. 28, 1043–1055 (2017)

    Article  Google Scholar 

  14. Azam, F., Sharif, M., Yasmin, M., Mohsin, S.: Artificial intelligence based techniques for earthquake prediction: a review. Sci. Int. (Lahore) 26, 1495–1502 (2014)

    Google Scholar 

  15. Fawzy, D., Arslan, G.: Development of building damage functions for big earthquakes in Turkey. Procedia – Soc. Behav. Sci. 195, 2290–2297 (2015)

    Article  Google Scholar 

  16. Baziar, M., Ghorbani, A.: Evaluation of lateral spreading using artificial neural networks. Soil Dyn. Earthquake Eng. 25, 1–9 (2005)

    Article  Google Scholar 

  17. Reyes, J., Morales-Esteban, A., Martínez-Álvarez, F.: Neural networks to predict earthquakes in Chile. Appl. Soft Comput. 13, 1314–1328 (2012)

    Article  Google Scholar 

  18. Alarifi, A.S.N., Alarifi, N.S.N., Al-Humidan, S.: Earthquakes magnitude predication using artificial neural network in Northern Red Sea area. J. King Saud Univ. 24, 301–313 (2012)

    Article  Google Scholar 

  19. Li, C., Liu, X.: An improved PSO-BP neural network and its application to earthquake prediction. In: Proceedings of the Chinese Control and Decision Conference, pp. 3434–3438 (2016)

    Google Scholar 

  20. Zamani, A., Sorbi, M.R., Safavi, A.A.: Application of neural network and ANFIS model for earthquake occurrence in Iran. Earth Sci. Inf. 6, 71–85 (2013)

    Article  Google Scholar 

  21. Zhou, F., Zhu, X.: Earthquake prediction based on LM-BP neural network. Lect. Notes Electr. Eng. 270, 13–20 (2014)

    Article  Google Scholar 

  22. Moustra, M., Avraamides, M., Christodoulou, C.: Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals. Expert Syst. Appl. 38, 15032–15039 (2011)

    Article  Google Scholar 

  23. Srilakshmi, S., Tiwari, R.K.: Model dissection from earthquake time series: a comparative analysis using nonlinear forecasting and artificial neural network approach. Comput. Geosci. 35, 191–204 (2009)

    Article  Google Scholar 

  24. Asencio-Cortés, G., Martínez-Álvarez, F., Morales-Esteban, A., Reyes, J., Troncoso, A.: Improving earthquake prediction with principal component analysis: application to Chile. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI), vol. 9121, pp. 393–404. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19644-2_33

    Chapter  Google Scholar 

  25. Martínez-Álvarez, F., Reyes, J., Morales-Esteban, A., Rubio-Escudero, C.: Determining the Best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula. Knowl. Based Syst. 50, 198–210 (2013)

    Article  Google Scholar 

  26. Panakkat, A., Adeli, H.: Neural network models for earthquake magnitude prediction using multiple seismicity indicators. Int. J. Neural Syst. 17, 13–33 (2007)

    Article  Google Scholar 

  27. Rafiq, M.Y., Bugmann, G., Easterbrook, D.J.: Neural network design for engineering applications. Comput. Struct. 79, 1541–1552 (2001)

    Article  Google Scholar 

  28. Haykin, S.: Neural Networks and Learning Machines. Pearson Education Inc., Upper Saddle River (2009)

    Google Scholar 

  29. Kriesel, D.: A Brief Introduction to Neural Networks (ZETA2-EN) (2005)

    Google Scholar 

  30. Uguz, S.: Yapay Sinir Ağları-Matlab Uygulaması. https://ybssoftware.files.wordpress.com/2011/03/ysa_uygulama.pdf

  31. RETMC.: Bogazici University Kandilli Observatory And Earthquake Research Institute Regional Earthquake-Tsunami Monitoring Center. http://www.koeri.boun.edu.tr/sismo/2/deprem-verileri/yillik-deprem-haritalari/. Accessed 21 June 2017

  32. MathWorks.: Fit Data with a Neural Network. https://www.mathworks.com/help/nnet/gs/fit-data-with-a-neural-network.html. Accessed 21 June 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmiye Çelik .

Editor information

Editors and Affiliations

Appendices

Appendix 1 (Numbers of Earthquakes in Different Magnitudes Between 2006 and 2015)

figure a

Appendix 2

figure b

Rights and permissions

Reprints and permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dereli, T., Çetinkaya, C., Çelik, N. (2019). Estimating the Probability of Earthquake Magnitude Between Mw = 4 and Mw = 5 for Turkey. In: Murayama, Y., Velev, D., Zlateva, P. (eds) Information Technology in Disaster Risk Reduction. ITDRR 2017. IFIP Advances in Information and Communication Technology, vol 516. Springer, Cham. https://doi.org/10.1007/978-3-030-18293-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18293-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18292-2

  • Online ISBN: 978-3-030-18293-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics