Skip to main content

DMMAM: Deep Multi-source Multi-task Attention Model for Intensive Care Unit Diagnosis

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2019)

Abstract

Disease diagnosis can provide crucial information for clinical decisions that influence the outcome in acute serious illness, and this is particularly in the intensive care unit (ICU). However, the central role of diagnosis in clinical practice is challenged by evidence that does not always benefit patients and that factors other than disease are important in determining patient outcome. To streamline the diagnostic process in daily routine and avoid misdiagnoses, in this paper, we proposed a deep multi-source multi-task attention model (DMMAM) for ICU disease diagnosis. DMMAM exploits multi-sources information from various types of complications, clinical measurements, and the medical treatments to support the diagnosis. We evaluate the proposed model with 50 diseases of 9 classifications on an extensive collection of real-world ICU Electronic Health Records (EHR) dataset with 151729 ICU admissions from 46520 patients. Experiments results demonstrate the effectiveness and the robustness of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data available at https://mimic.physionet.org/.

References

  1. Ahmadi, H., Gholamzadeh, M., Shahmoradi, L., Nilashi, M., Rashvand, P.: Diseases diagnosis using fuzzy logic methods: a systematic and meta-analysis review. Comput. Methods Programs Biomed. 161, 145 (2018)

    Article  Google Scholar 

  2. Azar, A.T., El-Metwally, S.M.: Decision tree classifiers for automated medical diagnosis. Neural Comput. Appl. 23(7–8), 2387–2403 (2013)

    Article  Google Scholar 

  3. Blaxter, M.: Diagnosis as category and process: the case of alcoholism. Soc. Sci. Med. Part A Med. Psychol. Med. Sociol. 12, 9–17 (1978)

    Google Scholar 

  4. Chaurasia, V., Pal, S.: A novel approach for breast cancer detection using data mining techniques (2017)

    Google Scholar 

  5. Che, Z., Purushotham, S., Khemani, R., Liu, Y.: Interpretable deep models for ICU outcome prediction. In: AMIA Annual Symposium Proceedings, vol. 2016, p. 371. American Medical Informatics Association (2016)

    Google Scholar 

  6. Chen, M., Hao, Y., Hwang, K., Wang, L., Wang, L.: Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5, 8869–8879 (2017)

    Article  Google Scholar 

  7. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: predicting clinical events via recurrent neural networks. In: Machine Learning for Healthcare Conference, pp. 301–318 (2016)

    Google Scholar 

  8. Del Mar, C., Doust, J., Glasziou, P.: Clinical thinking; evidence, communication and decision-making (2006)

    Google Scholar 

  9. Detemmerman, L., Olivier, S., Bours, V., Boemer, F.: Innovative PCR without dna extraction for African sickle cell disease diagnosis. Hematology 23(3), 181–186 (2018)

    Article  Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Hao, Y., Zuo, W., Shi, Z., Yue, L., Xue, S., He, F.: Prognosis of thyroid disease using MS-apriori improved decision tree. In: Liu, W., Giunchiglia, F., Yang, B. (eds.) KSEM 2018. LNCS (LNAI), vol. 11061, pp. 452–460. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99365-2_40

    Chapter  Google Scholar 

  12. Johnson, A.E., et al.: Mimic-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  13. Johnson, M.J., Willsky, A.S.: Bayesian nonparametric hidden semi-Markov models. J. Mach. Learn. Res. 14, 673–701 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Jutel, A., Nettleton, S., et al.: Towards a sociology of diagnosis: reflections and opportunities. Soc. Sci. Med. 73(6), 793–800 (2011)

    Article  Google Scholar 

  15. Lin, C., et al.: Early diagnosis and prediction of sepsis shock by combining static and dynamic information using convolutional-LSTM. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 219–228. IEEE (2018)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Long, N.C., Meesad, P., Unger, H.: A highly accurate firefly based algorithm for heart disease prediction. Expert Syst. Appl. 42(21), 8221–8231 (2015)

    Article  Google Scholar 

  18. Marshall, J.C.: Measurements in the intensive care unit: what do they mean? Crit. Care 7(6), 415 (2003)

    Article  Google Scholar 

  19. Nguyen, C., Wang, Y., Nguyen, H.N.: Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic. J. Biomed. Sci. Eng. 6(05), 551 (2013)

    Article  Google Scholar 

  20. Nilashi, M., Ahmadi, H., Shahmoradi, L., Ibrahim, O., Akbari, E.: A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique. J. Infect. Public Health 12, 13 (2018)

    Article  Google Scholar 

  21. Park, I.H., et al.: Disease-specific induced pluripotent stem cells. Cell 134(5), 877–886 (2008)

    Article  Google Scholar 

  22. Polivka, J., Kralickova, M., Kaiser, C., Kuhn, W., Golubnitschaja, O.: Mystery of the brain metastatic disease in breast cancer patients: improved patient stratification, disease prediction and targeted prevention on the horizon? EPMA J. 8(2), 119–127 (2017)

    Article  Google Scholar 

  23. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  24. Shi, Z., Zuo, W., Chen, W., Yue, L., Han, J., Feng, L.: User relation prediction based on matrix factorization and hybrid particle swarm optimization. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 1335–1341. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  25. Sicherer, S.H., Sampson, H.A.: Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol. 141(1), 41–58 (2018)

    Article  Google Scholar 

  26. Song, H., Rajan, D., Thiagarajan, J.J., Spanias, A.: Attend and diagnose: clinical time series analysis using attention models. arXiv preprint arXiv:1711.03905 (2017)

  27. Subasi, A.: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput. Biol. Med. 43(5), 576–586 (2013)

    Article  Google Scholar 

  28. Tangri, N., et al.: A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305(15), 1553–1559 (2011)

    Article  Google Scholar 

  29. Trask, A., Gilmore, D., Russell, M.: Modeling order in neural word embeddings at scale. arXiv preprint arXiv:1506.02338 (2015)

  30. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  31. Zhang, D., Shen, D., Initiative, A.D.N., et al.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Nature Science Foundation of Jilin Province (20180101330JC, 20190302029GX), the Fundamental Research Funds for the Central Universities (No. 2412017QD028), the China Postdoctoral Science Foundation (No. 2017M621192), the Scientific and Technological Development Program of Jilin Province (No. 20180520022JH, 20190302109GX). The authors also gratefully acknowledge the financial support from China Scholarship Council (No. 201706170617).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shining Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Z., Zuo, W., Chen, W., Yue, L., Hao, Y., Liang, S. (2019). DMMAM: Deep Multi-source Multi-task Attention Model for Intensive Care Unit Diagnosis. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11447. Springer, Cham. https://doi.org/10.1007/978-3-030-18579-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18579-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18578-7

  • Online ISBN: 978-3-030-18579-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics