Skip to main content

Philosophy and Biology of Minimally Invasive Spine Surgery

  • Chapter
  • First Online:
Minimally Invasive Spine Surgery

Abstract

The last decades have shown an ongoing progress in minimally invasive spine surgery (MISS). The development and introduction of new surgical instruments, smaller tissue retractors, advancements in microscopy, improvement in medical imaging capability, the sensitivity of C-arm, along with the introduction of intraoperative CT scanning and navigation, have allowed for less soft tissue morbidity and shorter lengths of stay. Multiple studies have demonstrated that MISS is associated with lowering the soft tissue injury, decreasing postoperative pain, and shortening lengths of stay and recovery time. The key to successfully performing MISS procedures is a thorough understanding of various anatomical relationships between soft tissue planes, approach corridors, bony anatomy, and neurological structures. Minimally invasive procedures are technically demanding and require advanced training and mentorship. This chapter focuses on the philosophy and biology of MISS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawaguchi Y, Matsui H, Tsuji H. Changes in serum creatinine phosphokinase MM isoenzyme after lumbar spine surgery. Spine (Phila Pa 1976). 1997;22:1018–23.

    Article  CAS  Google Scholar 

  2. Defour DR, Lott JA, Henry JB. Clinical enzymology. In: Henry JB, editor. Clinical diagnosis and management by laboratory tests. 20th ed. Philadelphia: Saunders; 2001. p. 292–4.

    Google Scholar 

  3. Defour DR, Lott JA, Henry JB. Clinical enzymology. In: Henry JB, editor. Clinical diagnosis and management by laboratory tests. 20th ed. Philadelphia: Saunders; 2001. p. 297–300.

    Google Scholar 

  4. Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery: Part 3. A histologic and enzymatic analysis. Spine (Phila Pa 1976). 1996;21(4):941–94.

    Article  CAS  Google Scholar 

  5. Smith JS, Shaffrey CI, Sansur CA, Berven SH, Fu KG, et al. Rates of infection after spine surgery based on 108,419 procedures: a report from the scoliosis research society morbidity and mortality committee. Spine (Phila Pa 1976). 2011;36(7):556–63.

    Article  Google Scholar 

  6. Park Y, Ha JW. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine (Phila Pa 1976). 2007;32(5):537–43.

    Article  Google Scholar 

  7. Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976). 2003;15(suppl):26–35.

    Google Scholar 

  8. Hu ZJ, Fang XQ, Fan SW. Iatrogenic injury to the erector spinae during posterior lumbar spine surgery: underlying anatomical considerations, preventable root causes, and surgical tips and tricks. Eur J Orthop Surg Traumatol. 2014;24(2):127–35.

    Article  PubMed  Google Scholar 

  9. Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976). 2005;30(1):123–9.

    Article  Google Scholar 

  10. Hung CW, Wu MF, Hong RT, Weng MJ, Yu GF, Kao CH. Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clin Neurol Neurosurg. 2016;145:41–5.

    Article  PubMed  Google Scholar 

  11. Fan S, Hu Z, Zhao F, Zhao X, Huang Y, Fang X. Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach. Eur Spine J. 2010;19:316–24.

    Article  PubMed  Google Scholar 

  12. Perez-Cruet MJ, Hussain NS, White GZ, Begun EM, Collins RA, Fahim DK, Yacob SA. Quality-of-life outcomes with minimally invasive transforaminal lumbar interbody fusion based on long-term analysis of 304 consecutive patients. Spine (Phila Pa 1976). 2014;39(3):191–8.

    Article  Google Scholar 

  13. Cholewicki J, Panjabi M, Khachatryan A. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine (Phila Pa 1976). 1997;22(19):2207–12.

    Article  CAS  Google Scholar 

  14. Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5:390–6; discussion 7.

    Article  CAS  PubMed  Google Scholar 

  15. Panjabi MM. The stabilizing system of the spine. Part I. function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5:383–9; discussion 97.

    Article  CAS  PubMed  Google Scholar 

  16. Panjabi MM, Lydon C, Vasavada A, Grob D, Crisco JJ 3rd, Dvorak J. On the understanding of clinical instability. Spine (Phila Pa 1976). 1994;19:2642–50.

    Article  CAS  Google Scholar 

  17. Panjabi MM, White AA 3rd. Basic biomechanics of the spine. Neurosurgery. 1980;7:76–93.

    Article  CAS  PubMed  Google Scholar 

  18. Donisch E, Basmajian J. Electromyography of deep back muscles in man. Am J Anat. 1972;133(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  19. Ward SR, Kim CW, Eng CM, Gottschalk LJ 4th, Tomiya A, Garfin SR, Lieber RL. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J Bone Joint Surg Am. 2009;91:176–85.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Macintosh JE, Bogduk N. The biomechanics of the lumbar multifidus. Clin Biomech. 1986;1:205–13.

    Article  CAS  Google Scholar 

  21. Marras WS, Davis KG, Granata KP. Trunk muscle activities during asymmetric twisting motions. J Electromyogr Kinesiol. 1998;8:247–56.

    Article  CAS  PubMed  Google Scholar 

  22. MacIntosh JE, Bogduk N. The morphology of the lumbar erector spinae. Spine (Phila Pa 1976). 1987;12:658–68.

    Article  CAS  Google Scholar 

  23. Macintosh JE, Bogduk N. The attachments of the lumbar erector spinae. Spine (Phila Pa 1976). 1991;16:783–92.

    Article  CAS  Google Scholar 

  24. Bogduk N, Macintosh JE, Pearcy MJ. A universal model of the lumbar back muscles in the upright position. Spine (Phila Pa 1976). 1992;17:897–913.

    Article  CAS  Google Scholar 

  25. Delp SL, Suryanarayanan S, Murray WM, Uhlir J, Triolo RJ. Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. J Biomech. 2001;34(3):371–5.

    Article  CAS  PubMed  Google Scholar 

  26. Kim KT, Lee SH, Suk KS, Bae SC. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine (Phila Pa 1976). 2006;31:712–6.

    Article  Google Scholar 

  27. Waschke A, Hartmann C, Walter J, Dünisch P, Wahnschaff F, Kalff R, Ewald C. Denervation and atrophy of paraspinal muscles after open lumbar interbody fusion is associated with clinical outcome—electromyographic and CT-volumetric investigation of 30 patients. Acta Neurochir. 2014;156(2):235–44.

    Article  PubMed  Google Scholar 

  28. Styf JR, Willén J. The effects of external compression by three different retractors on pressure in the erector spine muscles during and after posterior lumbar spine surgery in humans. Spine (Phila Pa 1976). 1998;23(3):354–8.

    Article  CAS  Google Scholar 

  29. Cawley DT, Alexander M, Morris S. Multifidus innervation and muscle assessment post-spinal surgery. Eur Spine J. 2014;23(3):320–7.

    Article  PubMed  Google Scholar 

  30. Kjaer P, Bendix T, Sorensen JS, Korsholm L, Leboeuf-Yde C. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain. BMC Med. 2007;5(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zoidl G, Grifka J, Boluki D, Willburger RE, Zoidl C, Krämer J, Faustmann PM. Molecular evidence for local denervation of paraspinal muscles in failed-back surgery/postdiscotomy syndrome. Clin Neuropathol. 2002;22(2):71–7.

    Google Scholar 

  32. Sihvonen T, Herno A, Paljärvi L, Airaksinen O, Partanen J, Tapaninaho A. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine (Phila Pa 1976). 1993;18(5):575–81.

    Article  CAS  Google Scholar 

  33. Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery: 2. Histologic and histochemical analyses in humans. Spine (Phila Pa 1976). 1994;19:2598–602.

    Article  CAS  Google Scholar 

  34. Rantanen J, Hurme M, Falck B, Alaranta H, Nykvist F, et al. The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine (Phila Pa 1976). 1993;18:568–74.

    Article  CAS  Google Scholar 

  35. Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine (Phila Pa 1976). 2014;39:240–5.

    Article  Google Scholar 

  36. Bogduk N. The lumbar mamilloaccessory ligament. Its anatomical and neurosurgical significance. Spine (Phila Pa 1976). 1981;6:162–16.

    Article  CAS  Google Scholar 

  37. Bogduk N, Wilson AS, Tynan W. The human lumbar dorsal rami. J Anat. 1982;134:383–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Malis LI. Electrosurgery: technical note. J Neurosurg. 1996;85(5):970–5.

    Article  CAS  PubMed  Google Scholar 

  39. Konno S, Olmarker K, Byröd G, Nordborg C, Strömqvist B, Rydevik B. Acute thermal nerve root injury. Eur Spine J. 1994;3(6):299–302.

    Article  CAS  PubMed  Google Scholar 

  40. Kim CW. Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine (Phila Pa 1976). 2010;35(26S):281–6.

    Article  Google Scholar 

  41. Kim CW, Siemionow K, Anderson DG, Phillips FM. The current state of minimally invasive spine surgery. J Bone Joint Surg Am. 2011;93(6):582–96.

    Article  PubMed  Google Scholar 

  42. Regev GJ, Lee YP, Taylor WR, Garfin SR, Kim CW. Nerve injury to the posterior rami medial branch during the insertion of pedicle screws: comparison of mini-open versus percutaneous pedicle screw insertion techniques. Spine (Phila Pa 1976). 2009;34(11):1239–42.

    Article  Google Scholar 

  43. Styf J, Lysell E. Chronic compartment syndrome in the erector spinae muscle. Spine (Phila Pa 1976). 1987;12(7):680–2.

    Article  CAS  Google Scholar 

  44. Gejo R, Matsui H, Kawaguchi Y, Ishihara H, Tsuji H. Serial changes in trunk muscle performance after posterior lumbar surgery. Spine (Phila Pa 1976). 1999;24:1023–8.

    Article  CAS  Google Scholar 

  45. Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery: 1. Histologic and histochemical analyses in humans. Spine (Phila Pa 1976). 1994;19:2590–7.

    Article  CAS  Google Scholar 

  46. Boelderl A, Daniaux H, Kathrein A, Maurer H. Danger of damaging the medial branches of the posterior rami of spinal nerves during a dorsomedian approach to the spine. Clin Anat. 2002;15(2):77–81.

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi N, Tamaki T, Yamada H. Experimental study of denervated muscle atrophy following severance of posterior rami of the lumbar spinal nerves. Spine (Phila Pa 1976). 1992;17:1361–7.

    Article  CAS  Google Scholar 

  48. Peng CWB, Yue WM, Poh SY, Yeo W, Tan SB. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2009;34(13):1385–9.

    Article  Google Scholar 

  49. Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv Immunol. 1994;55:97–179.

    Article  CAS  PubMed  Google Scholar 

  50. Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A, et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 1986;324:73–6.

    Article  CAS  PubMed  Google Scholar 

  51. Igonin AA, Armstrong VW, Shipkova M, Lazareva NB, Kukes VG, Oellerich M. Circulating cytokines as markers of systemic inflammatory response in severe community-acquired pneumonia. Clin Biochem. 2004;37:204–9.

    Article  CAS  PubMed  Google Scholar 

  52. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, Womack WJ, Puttlitz CM. Cortical bone trajectory for lumbar pedicle screws. Spine (Phila Pa 1976). 2009;9:366–73.

    CAS  Google Scholar 

  53. Hyun SJ, Kim YB, Kim YS, Park SW, Nam TK, Hong HJ, Kwon JT. Postoperative changes in paraspinal muscle volume: comparison between paramedian interfascial and midline approaches for lumbar fusion. J Korean Med Sci. 2007;22(4):646–51.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stevens KJ, Spenciner DB, Griffiths KL, Kim KD, Zwienenberg-Lee M, Alamin T, Bammer R. Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech. 2006;19(2):77–86.

    Article  PubMed  Google Scholar 

  55. Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine (Phila Pa 1976). 1990;15:1142–7.

    Article  CAS  Google Scholar 

  56. Tuite GF, Doran SE, Stern JD, McGillicuddy JE, Papadopoulos SM, Lundquist CA, Oyedijo DI, Grube SV, Gilmer HS, Schork MA, et al. Outcome after laminectomy for lumbar spinal stenosis. Part II: radiographic changes and clinical correlations. J Neurosurg. 1994;81:707–15.

    Article  CAS  PubMed  Google Scholar 

  57. Johnsson KE, Willner S, Johnsson K. Postoperative instability after decompression for lumbar spinal stenosis. Spine (Phila Pa 1976). 1986;11:107–10.

    Article  CAS  Google Scholar 

  58. Palmer S. Use of a tubular retractor system in microscopic lumbar discectomy: 1 year prospective results in 135 patients. Neurosurg Focus. 2002;13:E5.

    PubMed  Google Scholar 

  59. Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine (Phila Pa 1976). 2002;27:432–8.

    Article  Google Scholar 

  60. Bresnahan L, Ogden AT, Natarajan RN, Fessler RG. A biomechanical evaluation of graded posterior element removal for treatment of lumbar stenosis: comparison of a minimally invasive approach with two standard laminectomy techniques. Spine (Phila Pa 1976). 2009;34:17–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    The potential causes of muscle injury are:

    1. (a)

      Dissection, retraction, and nerve injury.

    2. (b)

      Wound exposure and operative time.

    3. (c)

      Wound exposure, operative time, and spinal fusion.

    4. (d)

      All above answers are correct.

  2. 2.

    Which nerve supplies the lumbar multifidus muscle:

    1. (a)

      Medial branch of the dorsal rami of the spinal nerve.

    2. (b)

      Intermediate branch of the dorsal rami of the spinal nerve.

    3. (c)

      Lateral branch of the dorsal rami of the spinal nerve.

    4. (d)

      None of above answers is correct.

  3. 3.

    Which answer includes only the advantages of MISS?

    1. (a)

      Lower infection rates, decreased postoperative pain, shorter length of hospital stay, decreased blood loss, and decreased paraspinal muscle atrophy.

    2. (b)

      Lower infections rates, shorter length of hospital stay, decreased blood loss, decreased paraspinal muscle atrophy, and shorter operative time.

    3. (c)

      Decreased radiation exposure, decreased operative time, decreased postoperative pain, and shorter length of hospital stay.

    4. (d)

      Improvement in spine extension strength, better cosmetic outcomes, and decreased radiation exposure.

Answers

  1. 1.

    d

  2. 2.

    a

  3. 3.

    a

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glowka, P., Kim, C.W., Siemionow, K. (2019). Philosophy and Biology of Minimally Invasive Spine Surgery. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics