Skip to main content

Nested Sequents for the Logic of Conditional Belief

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2019)

Abstract

The logic of conditional belief, called Conditional Doxastic Logic (\(\mathsf {CDL}\)), was proposed by Board, Baltag and Smets to model revisable belief and knowledge in a multi-agent setting. We present a proof system for \(\mathsf {CDL}\) in the form of a nested sequent calculus. To the best of our knowledge, ours is the first internal and standard calculus for this logic. We take as primitive a multi-agent version of the “comparative plausibility operator”, as in Lewis’ counterfactual logic. The calculus is analytic and provides a decision procedure for \(\mathsf {CDL}\). As a by-product we also obtain a nested sequent calculus for multi-agent modal logic \(\mathsf {S5}_i\).

This work was partially supported by the Project TICAMORE ANR-16-CE91-0002-01 and by WWTF project MA 16-28.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An equivalent definition of the simple belief operator is the following: \( Bel _i A := \lnot (\lnot A \preccurlyeq _i A)\) [10]. We choose a simpler formulation in terms of \( \top \), also from [10].

  2. 2.

    Refer to  [4, 9] for a detailed correspondence.

  3. 3.

    Refer to next section on \( \mathsf {S5}_i\).

  4. 4.

    Evaluating KA at a world x corresponds to evaluating \( \bot \preccurlyeq \lnot A \) in the outer neighbourhood of N(x) . For this reason, Lewis calls \( \mathsf {S5}\) the outer modal logic of \( \mathbb {V}\mathbb {T}\mathbb {A}\).

References

  1. Baltag, A., Smets, S.: Conditional doxastic models: a qualitative approach to dynamic belief revision. Electron. Notes Theor. Comput. Sci. 165, 5–21 (2006)

    Article  MathSciNet  Google Scholar 

  2. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. Log. Found. Game Decis. Theory (LOFT 7) 3, 9–58 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Baltag, A., Smets, S., et al.: The logic of conditional doxastic actions. Texts Log. Games Spec. Issue New Perspect. Games Interact. 4, 9–31 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49(1), 49–80 (2004)

    Article  MathSciNet  Google Scholar 

  5. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577 (2009)

    Article  MathSciNet  Google Scholar 

  6. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent calculi for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 272–287. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_18

    Chapter  MATH  Google Scholar 

  7. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Hypersequent calculi for Lewis’ conditional logics with uniformity and reflexivity. In: Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 131–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1_8

    Chapter  MATH  Google Scholar 

  8. Girlando, M., Negri, S., Olivetti, N., Risch, V.: The logic of conditional beliefs: neighbourhood semantics and sequent calculus. In: Advances in Modal Logic, pp. 322–341 (2016)

    Google Scholar 

  9. Girlando, M., Negri, S., Olivetti, N., Risch, V.: Conditional beliefs: from neighbourhood semantics to sequent calculus. Rev. Symb. Log. 11(4), 736–779 (2018)

    Article  MathSciNet  Google Scholar 

  10. Lewis, D.K.: Counterfactuals. Blackwell, Oxford (1973)

    MATH  Google Scholar 

  11. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionistic modal logics. In: Goré, R., Kooi, B.P., Kurucz, A. (eds.) AiML 10. pp. 387–406. College (2014)

    Google Scholar 

  12. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism and basic results. IFCoLog J. Log. Appl. 4, 1241–1286 (2017)

    Google Scholar 

  13. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfactual logics. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 270–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_19

    Chapter  Google Scholar 

  14. Pacuit, E.: Neighbourhood semantics for modal logics. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-67149-9

    Book  MATH  Google Scholar 

  15. Poggiolesi, F.: A cut-free simple sequent calculus for modal logic S5. Rev. Symb. Log. 1(1), 3–15 (2008)

    Article  MathSciNet  Google Scholar 

  16. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philosophy. TL, vol. 28, pp. 31–51. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9084-4_3

    Chapter  Google Scholar 

  17. Stalnaker, R.: Belief revision in games: forward and backward induction 1. Math. Soc. Sci. 36(1), 31–56 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Girlando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Girlando, M., Lellmann, B., Olivetti, N. (2019). Nested Sequents for the Logic of Conditional Belief. In: Calimeri, F., Leone, N., Manna, M. (eds) Logics in Artificial Intelligence. JELIA 2019. Lecture Notes in Computer Science(), vol 11468. Springer, Cham. https://doi.org/10.1007/978-3-030-19570-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19570-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19569-4

  • Online ISBN: 978-3-030-19570-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics