Skip to main content

A Novel Design for Piezoelectric Based Harvester for Rotating Objects

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 224))

Abstract

In this work, a novel rotating hub piezoelectric energy harvester has been proposed. This harvester converts the magnetic force of attraction in electric charge. The magnetic force is induced between the magnets mounted on the hub and a lever mounted directly below it. The magnetic force on the lever is magnified at the other end where a piezoelectric bar is mounted. Due to rotation, the magnetic force on piezoelectric bar varies continuously and generates charge due to piezoelectric effect. A mathematical model is formulated to compute root mean square of the power. Effects of various parameters such as thickness of magnets, thickness and length of piezoelectric bar , ratio of moment arms and structural stiffness of lever on the power and natural frequency of system have been studied. The maximum power of 113.6684 W is obtained in the current system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Hehn, Y. Manoli, Springer Series in Adv. Microelectron. 38, 33 (2015)

    Google Scholar 

  2. D.J. Leo, Engineering Analysis of Smart Material Systems (John Wiley & Sons, Inc., Hoboken, NJ, 2007)

    Book  Google Scholar 

  3. A. Nechibvute, A.R. Akande, P.V.C. Luhanga, J. Pertanika, J. Sci. Technol. 19(2), 259 (2011)

    Google Scholar 

  4. A.T. Mineto, M.P.S. Braun, H.A. Navarro, P.S. Varoto, Proceedings of the 9th Brazillian Conference on Dynamics Control and Their Applications, 07–11 June 2010

    Google Scholar 

  5. Ji-T. Lin, B. Lee, B. Alphenaa, Smart Mater. Struct. 19, 045012 (2010)

    Article  Google Scholar 

  6. S. Zhou, J. Cao, A. Erturk, J. Lin, Appl. Phys. Lett. 102, 173901 (2013)

    Article  Google Scholar 

  7. J. Yang, Y. Wen, P. Li, X. Bai, M. Li, IEEE. 978-1-4244-9289 (2011)

    Google Scholar 

  8. G. Manla, M.W. Neil, M.J. Tudor, IEEE Sens. J. 12(6) (2012)

    Google Scholar 

  9. Y. Sang, X. Huang, H. Liu, P. Jin, IEEE Trans. Magn. 48(11) (2012)

    Article  Google Scholar 

  10. J. Sirohi, R. Mahadik, J. Vibr. Acoust. 134(1), 011009 (2012)

    Article  Google Scholar 

  11. N. Rezaei-Hosseinabadi, A. Tabesh, R. Dehghani, A. Aghili, IEEE Trans. Ind. Electron. 62(6), 3576 (2012)

    Google Scholar 

  12. N. Wu, Q. Wang, X.D. Xie, Smart Mater. Struct. 21, 095023 (2012)

    Google Scholar 

  13. X.D. Xie, Q. Wang, N. Wu, Int. J. Eng. Sci. 77, 71 (2014)

    Article  Google Scholar 

  14. L.A. Weinstein, M.R. Cacan, P.M. So, P.K. Wright, Smart Mater. Struct. 22, 045003 (2013)

    Article  Google Scholar 

  15. J. Zhang, Z. Fang, C. Shu, Z. Jia, Zhang, C. Li, Sens. Actuators 262, 123 (2017)

    Article  CAS  Google Scholar 

  16. J.X. Tao, N.V. Viet, A. Carpinteri, Q. Wang, Eng. Struct. 133, 74 (2017)

    Article  Google Scholar 

  17. T. Narolia, V.K. Gupta, I.A. Parinov, in International Conference on Physics and Mechanics of New Materials and Their Applications, Jabalpur, India (2017)

    Google Scholar 

  18. K&J Magnetics, www.kjmagnetics.com/calculator.asp (2011)

  19. A.A. Waleed, H. Matthias, H. Tobias, W. Walter, Smart Mater. Struct. 21, 035019 (2012)

    Article  Google Scholar 

  20. N.V. Viet, X.D. Xie, K.M. Liew, N. Banthia, Q. Wang, J. Energy 112, 1219 (2016)

    Article  Google Scholar 

  21. S.O. Oyadiji, S. Qi, R. Shuttleworth, Proceedings of the 4th World Congress on Engineering Asset Management Athens, Greece, 28–30 Sept 2009

    Google Scholar 

  22. R.D. Blevins, R. Plunkett, J. Appl. Mech. 47, 461 (1980)

    Article  Google Scholar 

  23. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96(9), 1457 (2008)

    Article  Google Scholar 

  24. X.D. Xie, Q. Wang, J. Energy 86, 385 (2015)

    Article  Google Scholar 

  25. J. Woodhouse, J. Sound Vibr. 215(3), 547 (1998)

    Article  Google Scholar 

  26. S.S. Rao, F.F. Yap, Mechanical Vibrations, vol 4 (Addison-Wesley, New York, 1995)

    Google Scholar 

Download references

Acknowledgements

The study is supported partially by the Russian Foundation for Basic Research (Grant No. 19-08-00365); IAP thanks the Russian Department of Science and High Education for grant No. 3.5378.2017/VU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejkaran Narolia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narolia, T., Gupta, V.K., Parinov, I.A. (2019). A Novel Design for Piezoelectric Based Harvester for Rotating Objects. In: Parinov, I., Chang, SH., Kim, YH. (eds) Advanced Materials. Springer Proceedings in Physics, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-030-19894-7_45

Download citation

Publish with us

Policies and ethics