Skip to main content

Thrombotic Risk from Chemotherapy and Other Cancer Therapies

  • Chapter
  • First Online:
Thrombosis and Hemostasis in Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 179))

Abstract

Cancer patients have an increased risk of thrombosis. The development of cancer thrombosis is dependent on a number of factors including cancer type, stage, various biologic markers, and the use of central venous catheters. In addition, cancer treatment itself may increase thrombotic risk. Tamoxifen increases the risk of venous thromboembolism (VTE) by two- to sevenfold, while an impact on risk of arterial thrombosis is uncertain. Immunomodulatory imide drugs (IMiDs) such as thalidomide and lenalidomide increase the risk of VTE in patients with multiple myeloma (MM) by about 10–40% when given in combination with glucocorticoids or other chemotherapy agents; the risk of VTE in MM patients treated with IMiD-containing regimens necessitates that such patients receive thromboprophylaxis with aspirin, low-molecular-weight heparin, or warfarin. Among cytotoxic chemotherapy agents, cisplatin, and to a lesser extent fluorouracil, has been described in association with thrombosis. l-asparaginase in treatment of acute lymphoblastic leukemia is significantly associated with increased thrombosis particularly affecting the CNS, which may be due to acquired antithrombin deficiency; at some centers, plasma infusions or antithrombin replacement is used to mitigate this. Bevacizumab, an inhibitor of vascular endothelial growth factor, increases arterial and possibly venous thrombotic risk, although the literature is conflicting about the latter. Supportive care agents in cancer care, such as erythropoiesis-stimulating agents, granulocyte colony stimulating factor, and steroids, also have some impact on thrombosis. This review summarizes the mechanisms by which these and other therapies modulate thrombotic risks and how such risks may be managed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorensen HT et al (2000) Prognosis of cancers associated with venous thromboembolism. N Engl J Med 343(25):1846–1850

    Article  CAS  PubMed  Google Scholar 

  2. Khorana AA et al (2013) Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer 119(3):648–655

    Article  CAS  PubMed  Google Scholar 

  3. Navi BB et al (2017) Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol 70(8):926–938

    Article  PubMed  PubMed Central  Google Scholar 

  4. Timp JF et al (2013) Epidemiology of cancer-associated venous thrombosis. Blood 122(10):1712–1723

    Article  CAS  PubMed  Google Scholar 

  5. Heit JA et al (2000) Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med 160(6):809–815

    Article  CAS  PubMed  Google Scholar 

  6. Davies C et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784

    Article  CAS  PubMed  Google Scholar 

  7. Lyman GH et al (2007) American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol 25(34):5490–5505

    Article  CAS  PubMed  Google Scholar 

  8. Nevasaari K, Heikkinen M, Taskinen PJ (1978) Tamoxifen and thrombosis. Lancet 2(8096):946–947

    Article  CAS  PubMed  Google Scholar 

  9. Conard J et al (1980) l-asparaginase, antithrombin III, and thrombosis. Lancet 1(8177):1091

    Article  CAS  PubMed  Google Scholar 

  10. Deitcher SR, Gomes MP (2004) The risk of venous thromboembolic disease associated with adjuvant hormone therapy for breast carcinoma: a systematic review. Cancer 101(3):439–449

    Article  PubMed  Google Scholar 

  11. Fisher B et al (1999) Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 353(9169):1993–2000

    Article  CAS  PubMed  Google Scholar 

  12. Zangari M et al (2009) Thrombotic events in patients with cancer receiving antiangiogenesis agents. J Clin Oncol 27(29):4865–4873

    Article  CAS  PubMed  Google Scholar 

  13. Khorana AA et al (2007) Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 110(10):2339–2346

    Article  PubMed  Google Scholar 

  14. Haddad TC, Greeno EW (2006) Chemotherapy-induced thrombosis. Thromb Res 118(5):555–568

    Article  CAS  PubMed  Google Scholar 

  15. Oppelt P, Betbadal A, Nayak L (2015) Approach to chemotherapy-associated thrombosis. Vasc Med 20(2):153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cuzick J et al (2002) First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial. Lancet 360(9336):817–824

    Article  CAS  PubMed  Google Scholar 

  17. Fisher B et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90(18):1371–1388

    Article  CAS  PubMed  Google Scholar 

  18. Fisher B et al (1996) Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors. J Natl Cancer Inst 88(21):1529–1542

    Article  CAS  PubMed  Google Scholar 

  19. Fisher B et al (1997) Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst 89(22):1673–1682

    Article  CAS  PubMed  Google Scholar 

  20. Hernandez RK et al (2009) Tamoxifen treatment and risk of deep venous thrombosis and pulmonary embolism: a Danish population-based cohort study. Cancer 115(19):4442–4449

    Article  CAS  PubMed  Google Scholar 

  21. Abramson N et al (2006) Effect of Factor V Leiden and prothrombin G20210→A mutations on thromboembolic risk in the national surgical adjuvant breast and bowel project breast cancer prevention trial. J Natl Cancer Inst 98(13):904–910

    Article  CAS  PubMed  Google Scholar 

  22. Decensi A et al (2005) Effect of tamoxifen on venous thromboembolic events in a breast cancer prevention trial. Circulation 111(5):650–656

    Article  CAS  PubMed  Google Scholar 

  23. Garber JE et al (2010) Factor V Leiden mutation and thromboembolism risk in women receiving adjuvant tamoxifen for breast cancer. J Natl Cancer Inst 102(13):942–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duggan C et al (2003) Inherited and acquired risk factors for venous thromboembolic disease among women taking tamoxifen to prevent breast cancer. J Clin Oncol 21(19):3588–3593

    Article  CAS  PubMed  Google Scholar 

  25. Eroglu A, Akar N (2011) Factor V Leiden, prothrombin G20210A and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphisms and the risk of tamoxifen-associated thromboembolism in breast cancer patients. Thromb Res 127(4):384–385

    Article  CAS  PubMed  Google Scholar 

  26. Hackshaw A et al (2011) Long-term benefits of 5 years of tamoxifen: 10-year follow-up of a large randomized trial in women at least 50 years of age with early breast cancer. J Clin Oncol 29(13):1657–1663

    Article  PubMed  Google Scholar 

  27. Ettinger B et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. Jama 282(7):637–645

    Google Scholar 

  28. Adomaityte J, Farooq M, Qayyum R (2008) Effect of raloxifene therapy on venous thromboembolism in postmenopausal women. A meta-analysis. Thromb Haemost 99(2):338–342

    Article  CAS  PubMed  Google Scholar 

  29. Vogel VG et al (2006) Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295(23):2727–2741

    Article  CAS  PubMed  Google Scholar 

  30. Goss PE et al (2005) Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst 97(17):1262–1271

    Google Scholar 

  31. Baum M et al (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359(9324):2131–2139

    Article  CAS  PubMed  Google Scholar 

  32. Rajkumar SV et al (2002) Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma. J Clin Oncol 20(21):4319–4323

    Article  CAS  PubMed  Google Scholar 

  33. Zangari M et al (2001) Increased risk of deep-vein thrombosis in patients with multiple myeloma receiving thalidomide and chemotherapy. Blood 98(5):1614–1615

    Article  CAS  PubMed  Google Scholar 

  34. Palumbo A et al (2008) Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 22(2):414–423

    Article  CAS  PubMed  Google Scholar 

  35. Dimopoulos MA et al (2014) Expert panel consensus statement on the optimal use of pomalidomide in relapsed and refractory multiple myeloma. Leukemia 28(8):1573–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zangari M et al (2003) The blood coagulation mechanism in multiple myeloma. Semin Thromb Hemost 29(3):275–282

    Article  CAS  PubMed  Google Scholar 

  37. Knight R, DeLap RJ, Zeldis JB (2006) Lenalidomide and venous thrombosis in multiple myeloma. N Engl J Med 354(19):2079–2080

    Article  CAS  PubMed  Google Scholar 

  38. Rajkumar SV et al (2008) Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J Clin Oncol 26(13):2171–2177

    Article  CAS  PubMed  Google Scholar 

  39. Zangari M et al (2011) Low venous thromboembolic risk with bortezomib in multiple myeloma and potential protective effect with thalidomide/lenalidomide-based therapy: review of data from phase 3 trials and studies of novel combination regimens. Clin Lymphoma Myeloma Leuk 11(2):228–236

    Article  CAS  PubMed  Google Scholar 

  40. Leonard JP et al (2015) Randomized trial of lenalidomide alone versus lenalidomide plus rituximab in patients with recurrent follicular lymphoma: CALGB 50401 (Alliance). J Clin Oncol 33(31):3635–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamshon S et al (2017) Venous thromboembolism in patients with B-cell non-Hodgkin lymphoma (NHL) treated with lenalidomide. Blood 130:122

    Google Scholar 

  42. Brandenburg NA et al (2008) Venous thromboembolism in patients with myelodysplastic syndrome treated with lenalidomide: incidence and risk factors. J Clin Oncol 15_Suppl:7084

    Article  Google Scholar 

  43. Kaushal V et al (2004) Thalidomide protects endothelial cells from doxorubicin-induced apoptosis but alters cell morphology. J Thromb Haemost 2(2):327–334

    Article  CAS  PubMed  Google Scholar 

  44. Abdullah WZ et al (2013) Increased PAC-1 expression among patients with multiple myeloma on concurrent thalidomide and warfarin. Blood Coagul Fibrinolysis 24(8):893–895

    Article  CAS  PubMed  Google Scholar 

  45. Rodeghiero F, Elice F (2003) Thalidomide and thrombosis. Pathophysiol Haemost Thromb 33(Suppl 1):15–18

    Article  PubMed  Google Scholar 

  46. Corso A et al (2004) Modification of thrombomodulin plasma levels in refractory myeloma patients during treatment with thalidomide and dexamethasone. Ann Hematol 83(9):588–591

    Article  CAS  PubMed  Google Scholar 

  47. Zappasodi P et al (2006) Thrombomodulin levels are not modified during thalidomide treatment. Eur J Haematol 77(5):453–454

    Article  PubMed  Google Scholar 

  48. Pal R et al (2010) Immunomodulatory derivatives induce PU.1 down-regulation, myeloid maturation arrest, and neutropenia. Blood 115(3):605–614

    Article  PubMed  CAS  Google Scholar 

  49. Palumbo A, Palladino C (2012) Venous and arterial thrombotic risks with thalidomide: evidence and practical guidance. Ther Adv Drug Saf 3(5):255–266

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zangari M et al (2002) Activated protein C resistance in the absence of factor V Leiden mutation is a common finding in multiple myeloma and is associated with an increased risk of thrombotic complications. Blood Coagul Fibrinolysis 13(3):187–192

    Article  CAS  PubMed  Google Scholar 

  51. Talamo GP et al (2009) Hypercoagulable states in patients with multiple myeloma can affect the thalidomide-associated venous thromboembolism. Blood Coagul Fibrinolysis 20(5):337–339

    Article  CAS  PubMed  Google Scholar 

  52. Bagratuni T et al (2013) Clinical and genetic factors associated with venous thromboembolism in myeloma patients treated with lenalidomide-based regimens. Am J Hematol 88(9):765–770

    Article  CAS  PubMed  Google Scholar 

  53. Johnson DC et al (2008) Genetic associations with thalidomide mediated venous thrombotic events in myeloma identified using targeted genotyping. Blood 112(13):4924–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zangari M et al (2008) Hemostatic effects of bortezomib treatment in patients with relapsed or refractory multiple myeloma. Haematologica 93(6):953–954

    Article  CAS  PubMed  Google Scholar 

  55. Larocca A et al (2012) Aspirin or enoxaparin thromboprophylaxis for patients with newly diagnosed multiple myeloma treated with lenalidomide. Blood 119(4):933–939; quiz 1093

    Article  PubMed  CAS  Google Scholar 

  56. Palumbo A et al (2011) Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: a phase III, open-label, randomized trial. J Clin Oncol 29(8):986–993

    Article  CAS  PubMed  Google Scholar 

  57. Lyman GH et al (2013) Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 31(17):2189–2204

    Article  CAS  PubMed  Google Scholar 

  58. Kristinsson SY (2010) Thrombosis in multiple myeloma. Hematol Am Soc Hematol Educ Program 2010:437–444

    Article  Google Scholar 

  59. Greeno EW, Bach RR, Moldow CF (1996) Apoptosis is associated with increased cell surface tissue factor procoagulant activity. Lab Invest 75(2):281–289

    CAS  PubMed  Google Scholar 

  60. Wang J et al (2001) Thrombogenic role of cells undergoing apoptosis. Br J Haematol 115(2):382–391

    Article  CAS  PubMed  Google Scholar 

  61. Rogers JS 2nd et al (1988) Chemotherapy for breast cancer decreases plasma protein C and protein S. J Clin Oncol 6(2):276–281

    Article  PubMed  Google Scholar 

  62. Zahir MN et al (2017) Incidence of Venous Thromboembolism in cancer patients treated with Cisplatin based chemotherapy—a cohort study. BMC Cancer 17(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  63. Seng S et al (2012) Risk of venous thromboembolism in patients with cancer treated with Cisplatin: a systematic review and meta-analysis. J Clin Oncol 30(35):4416–4426

    Article  CAS  PubMed  Google Scholar 

  64. Pulluri B et al (2016) Risk factors for venous thromboembolism in metastatic colon cancer patients in the contemporary treatment era: a SEER-Medicare data analysis. Blood 128:2598

    Google Scholar 

  65. Otten HM et al (2004) Symptomatic venous thromboembolism in cancer patients treated with chemotherapy: an underestimated phenomenon. Arch Intern Med 164(2):190–194

    Article  PubMed  Google Scholar 

  66. Grem JL et al (1994) Phase I and pharmacokinetic study of recombinant human granulocyte-macrophage colony-stimulating factor given in combination with fluorouracil plus calcium leucovorin in metastatic gastrointestinal adenocarcinoma. J Clin Oncol 12(3):560–568

    Article  CAS  PubMed  Google Scholar 

  67. Tournigand C et al (2004) FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22(2):229–237

    Article  CAS  PubMed  Google Scholar 

  68. Feffer SE, Carmosino LS, Fox RL (1989) Acquired protein C deficiency in patients with breast cancer receiving cyclophosphamide, methotrexate, and 5-fluorouracil. Cancer 63(7):1303–1307

    Article  CAS  PubMed  Google Scholar 

  69. Edwards RL et al (1990) Heparin abolishes the chemotherapy-induced increase in plasma fibrinopeptide A levels. Am J Med 89(1):25–28

    Article  CAS  PubMed  Google Scholar 

  70. Polk A et al (2014) A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol 15:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Priest JR et al (1980) Thrombotic and hemorrhagic strokes complicating early therapy for childhood acute lymphoblastic leukemia. Cancer 46(7):1548–1554

    Article  CAS  PubMed  Google Scholar 

  72. Grace RF et al (2011) The frequency and management of asparaginase-related thrombosis in paediatric and adult patients with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute consortium protocols. Br J Haematol 152(4):452–459

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gugliotta L et al (1992) Incidence of thrombotic complications in adult patients with acute lymphoblastic leukaemia receiving l-asparaginase during induction therapy: a retrospective study. The GIMEMA Group. Eur J Haematol 49(2):63–66

    Article  CAS  PubMed  Google Scholar 

  74. Lederman GS (1982) Stroke due to treatment with l-asparaginase in an adult. N Engl J Med 307(26):1643

    CAS  PubMed  Google Scholar 

  75. Mitchell LG et al (2003) A prospective cohort study determining the prevalence of thrombotic events in children with acute lymphoblastic leukemia and a central venous line who are treated with l-asparaginase: results of the Prophylactic Antithrombin Replacement in Kids with Acute Lymphoblastic Leukemia Treated with Asparaginase (PARKAA) Study. Cancer 97(2):508–516

    Article  CAS  PubMed  Google Scholar 

  76. Abbott LS et al (2009) The impact of prophylactic fresh-frozen plasma and cryoprecipitate on the incidence of central nervous system thrombosis and hemorrhage in children with acute lymphoblastic leukemia receiving asparaginase. Blood 114(25):5146–5151

    Article  CAS  PubMed  Google Scholar 

  77. Lauw MN et al (2013) Venous thromboembolism in adults treated for acute lymphoblastic leukaemia: effect of fresh frozen plasma supplementation. Thromb Haemost 109(4):633–642

    Article  CAS  PubMed  Google Scholar 

  78. Santoro N et al (2013) Screening for coagulopathy and identification of children with acute lymphoblastic leukemia at a higher risk of symptomatic venous thrombosis: an AIEOP experience. J Pediatr Hematol Oncol 35(5):348–355

    Article  CAS  PubMed  Google Scholar 

  79. Caruso V et al (2006) Thrombotic complications in childhood acute lymphoblastic leukemia: a meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood 108(7):2216–2222

    Article  CAS  PubMed  Google Scholar 

  80. Goyal G, Bhatt VR (2015) l-asparaginase and venous thromboembolism in acute lymphocytic leukemia. Future Oncol 11(17):2459–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Couturier MA et al (2015) Cerebral venous thrombosis in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma during induction chemotherapy with l-asparaginase: The GRAALL experience. Am J Hematol 90(11):986–991

    Article  CAS  PubMed  Google Scholar 

  82. Farrell K et al (2016) An antithrombin replacement strategy during asparaginase therapy for acute lymphoblastic leukemia is associated with a reduction in thrombotic events. Leuk Lymphoma 57(11):2568–2574

    Article  CAS  PubMed  Google Scholar 

  83. Hunault-Berger M et al (2008) Changes in antithrombin and fibrinogen levels during induction chemotherapy with l-asparaginase in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Use of supportive coagulation therapy and clinical outcome: the CAPELAL study. Haematologica 93(10):1488–1494

    Article  CAS  PubMed  Google Scholar 

  84. Meister B et al (2008) Comparison of low-molecular-weight heparin and antithrombin versus antithrombin alone for the prevention of symptomatic venous thromboembolism in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 50(2):298–303

    Article  PubMed  Google Scholar 

  85. Kabbinavar F et al (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21(1):60–65

    Article  CAS  PubMed  Google Scholar 

  86. Nalluri SR et al (2008) Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300(19):2277–2285

    Article  CAS  PubMed  Google Scholar 

  87. Alahmari AK et al (2016) Thromboembolic events associated with bevacizumab plus chemotherapy for patients with colorectal cancer: a meta-analysis of randomized controlled trials. Am Health Drug Benefits 9(4):221–232

    PubMed  PubMed Central  Google Scholar 

  88. Scappaticci FA et al (2007) Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst 99(16):1232–1239

    Article  PubMed  Google Scholar 

  89. Patel JN et al (2015) Bevacizumab and the risk of arterial and venous thromboembolism in patients with metastatic, castration-resistant prostate cancer treated on Cancer and Leukemia Group B (CALGB) 90401 (Alliance). Cancer 121(7):1025–1031

    Article  CAS  PubMed  Google Scholar 

  90. Miroddi M et al (2016) Systematic review and meta-analysis of the risk of severe and life-threatening thromboembolism in cancer patients receiving anti-EGFR monoclonal antibodies (cetuximab or panitumumab). Int J Cancer 139(10):2370–2380

    Article  CAS  PubMed  Google Scholar 

  91. Roddy JV et al (2010) Thromboembolic events in patients with colorectal cancer receiving the combination of bevacizumab-based chemotherapy and erythropoietin stimulating agents. Am J Clin Oncol 33(1):36–42

    Article  CAS  PubMed  Google Scholar 

  92. Kuk A et al (2017) Retrospective evaluation of thromboembolism risk in ovarian cancer patients treated with bevacizumab. Target Oncol 12(4):495–503

    Article  PubMed  PubMed Central  Google Scholar 

  93. DeLoughery TG, Beer TM (2015) Bevicizumab and thrombosis: some answers but questions remain. Cancer 121(7):975–977

    Article  CAS  PubMed  Google Scholar 

  94. Ferroni P et al (2010) Thromboembolic events in patients treated with anti-angiogenic drugs. Curr Vasc Pharmacol 8(1):102–113

    Article  CAS  PubMed  Google Scholar 

  95. Qi WX et al (2013) Risk of venous thromboembolic events associated with VEGFR-TKIs: a systematic review and meta-analysis. Int J Cancer 132(12):2967–2974

    Article  CAS  PubMed  Google Scholar 

  96. Tonia T et al (2012) Erythropoietin or darbepoetin for patients with cancer. Cochrane Database Syst Rev 12:Cd003407

    Google Scholar 

  97. Bohlius J et al (2006) Erythropoietin or darbepoetin for patients with cancer. Cochrane Database Syst Rev (3):CD003407

    Google Scholar 

  98. Khorana AA et al (2005) Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 104(12):2822–2829

    Article  PubMed  Google Scholar 

  99. Smith SW et al (2012) Erythropoiesis-stimulating agents are not associated with increased risk of thrombosis in patients with myelodysplastic syndromes. Haematologica 97(1):15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Johannesdottir SA et al (2013) Use of glucocorticoids and risk of venous thromboembolism: a nationwide population-based case-control study. JAMA Intern Med 173(9):743–752

    Article  CAS  PubMed  Google Scholar 

  101. Guy JB et al (2017) Venous thromboembolism in radiation therapy cancer patients: findings from the RIETE registry. Crit Rev Oncol Hematol 113:83–89

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Debbie Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debbie Jiang, M.D., Alfred Ian Lee, M.D. (2019). Thrombotic Risk from Chemotherapy and Other Cancer Therapies. In: Soff, G. (eds) Thrombosis and Hemostasis in Cancer. Cancer Treatment and Research, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-030-20315-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20315-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20314-6

  • Online ISBN: 978-3-030-20315-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics