Skip to main content

Validation of Unimodal Non-Gaussian Clusters

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Abstract

We analyze the influence of the cluster shape on the performance of four cluster validation criteria: AIC, BIC, ICL and NI. First we introduce a method to generate unimodal and radially symmetric clusters whose shape can be interpolated between peaky long-tailed and flat distributions using a single parameter. Normally distributed clusters are obtained as a special case. Then we systematically study the performance of AIC, BIC, ICL and NI when validating clusters of arbitrary shapes. Using problems with two clusters, different inter-cluster distances and different dimensions, we show that, while BIC provides the best results for normally distributed clusters, in a general context with high dimensional data and unknown cluster distributions the use of ICL or NI may be a better choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(\hat{\beta }(1) = \beta (1)\) as there is only one trivial solution for \(n_{c} = 1\).

  2. 2.

    In the original formulation in [18] there is an additional constant term that has been omitted here for the sake of simplicity. This term depends only on the covariance matrix of the entire data set, which is constant for any particular problem.

References

  1. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  2. Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components. J. R. Stat. Soc. B 59(4), 731–792 (1997)

    Article  MathSciNet  Google Scholar 

  3. Rasmussen, C.E.: The infinite Gaussian mixture model. In: Sara, A., Solla, T.K.L., Müller, K.-R. (eds.) Advances in Neural Information Processing Systems [NIPS Conference, Denver, Colorado, USA, 29 November–4 December 1999], vol. 12, pp. 554–560. The MIT Press (1999)

    Google Scholar 

  4. Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 9(2), 249–265 (2000)

    MathSciNet  Google Scholar 

  5. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

    Article  Google Scholar 

  6. McLachlan, G.J., Peel, D.: Finite Mixture Models. Series in Probability and Statistics. Wiley, New York (2000)

    Book  Google Scholar 

  7. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control. 19(6), 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  8. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  9. Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41(8), 578–588 (1998)

    Article  Google Scholar 

  10. Gordon, A.D.: Cluster validation. In: Hayashi, C., Yajima, K., Bock, H.H., Ohsumi, N., Tanaka, Y., Baba, Y. (eds.) Data Science, Classification and Related Methods, pp. 22–39. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Bozdogan, H.: Choosing the number of component clusters in the mixture-model using a new information complexity criterion of the inverse-Fisher information matrix. In: Opitz, O., Lausen, B., Klar, R. (eds.) Data Analysis and Knowledge Organization, pp. 40–54. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-50974-2_5

    Chapter  Google Scholar 

  12. Biernacki, C., Celeux, G., Govaert, G.: An improvement of the NEC criterion for assessing the number of clusters in a mixture model. Pattern Recognit. Lett. 20(3), 267–272 (1999)

    Article  Google Scholar 

  13. Bezdek, J.C., Li, W., Attikiouzel, Y., Windham, M.P.: A geometric approach to cluster validity for normal mixtures. Soft Comput. 1(4), 166–179 (1997)

    Article  Google Scholar 

  14. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recognit. 46(1), 243–256 (2013)

    Article  Google Scholar 

  15. Rodriguez, M.Z., et al.: Clustering algorithms: a comparative approach. PLoS ONE 14, e0210236 (2019)

    Article  Google Scholar 

  16. Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 719–725 (2000)

    Article  Google Scholar 

  17. Samé, A., Ambroise, C., Govaert, G.: An online classification EM algorithm based on the mixture model. Stat. Comput. 17(3), 209–218 (2007)

    Article  MathSciNet  Google Scholar 

  18. Lago-Fernández, L.F., Corbacho, F.J.: Normality-based validation for crisp clustering. Pattern Recognit. 43(3), 782–795 (2010)

    Article  Google Scholar 

  19. Lago-Fernández, L.F., Sánchez-Montañés, M.A., Corbacho, F.J.: The effect of low number of points in clustering validation via the negentropy increment. Neurocomputing 74(16), 2657–2664 (2011)

    Article  Google Scholar 

  20. Lago-Fernández, L.F., Sánchez-Montañés, M., Corbacho, F.: Fuzzy cluster validation using the partition negentropy criterion. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 235–244. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04277-5_24

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was funded by grant S2017/BMD-3688 from Comunidad de Madrid, and by Spanish projects MINECO/FEDER TIN2017-84452-R and DPI2015-65833-P (http://www.mineco.gob.es/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Lago-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lago-Fernández, L.F., Aragón, J., Sánchez-Montañés, M. (2019). Validation of Unimodal Non-Gaussian Clusters. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics