Skip to main content

Implementation of a Condition Monitoring System on an Electric Arc Furnace Through a Risk-Based Methodology

  • Chapter
  • First Online:
Value Based and Intelligent Asset Management

Abstract

This chapter presents the deployment of a condition monitoring system on an electric arc furnace in a steel making company, ranging from the development of the system until its implementation and the results achieved by its use in the plant. A step-wise risk-based methodology is introduced and it is adopted to deploy the condition monitoring system. The electric arc furnace is a relevant asset for safety issues; due to the characteristics of the furnace—running continuously at high temperatures and in harsh environmental conditions—many components cannot be visually inspected, thus a maintenance system, with real-time monitoring capabilities, represents a proper solution to keep under control the asset health state. Besides the monitoring activity, appropriate risk information must also be shown to maintenance personnel to effectively improve maintenance activity. In this concern, the condition monitoring system, herein presented, can be considered an E-maintenance tool, integrated within an existing industrial ICT infrastructure, and representing one practical application of E-maintenance concept within industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao, J., Cui, L., Zhao, L., Qiu, T., & Chen, B. (2009). Learning HAZOP expert system by case-based reasoning and ontology. Computers & Chemical Engineering, 33, 371–378.

    Article  Google Scholar 

  2. Barreto, S. M., Swerdlow, A. J., Smith, P. G., & Higgins, C. D. (1997). A nested case-control study of fatal work relate injuries among Brazilian steel workers. Occupational and Environmental Medicine, 54, 599–604.

    Article  Google Scholar 

  3. Deloux, E., Castanier, B., & Bérenguer, C. (2008). Maintenance policy for a deteriorating system evolving in a stressful environment. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 222, 613–622.

    Google Scholar 

  4. Huynh, K. T., Barros, A., & Bérenguer, C. (2012). Adaptive condition-based maintenance decision framework for deteriorating systems operating under variable environment and uncertain condition monitoring. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 226(6), 602–623.

    Google Scholar 

  5. Djurdjanovic, D., Lee, J., & Ni, J. (2003). Watchdog agent an infotronics-based prognostics approach for product performance degradation assessment and prediction. Advanced Engineering Informatics, 17, 109–125.

    Article  Google Scholar 

  6. Aberdeen Group. (2006). The Asset Management Benchmark Report: Moving Toward Zero Breakdown, http://www.aberdeen.com.

  7. Tsang, A. H. C. (2002). Strategic dimensions of maintenance management. Journal of Quality in Maintenance Engineering, 8(1), 7–39.

    Article  Google Scholar 

  8. Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., & Liao, H. (2006). Intelligent prognostics tools and e-maintenance. Special issue on e-maintenance. Computers in Industry, 57(6), 476–489.

    Google Scholar 

  9. Muller, A., Crespo Marquez, A., & Iung, B. (2008). On the concept of e-maintenance review and current research. Reliability Engineering and System Safety, 93(8), 1165–1187.

    Article  Google Scholar 

  10. Iung, B., Levrat, E., Crespo Marquez, A., & Erbe, H. (2009). Conceptual framework for e-maintenance: Illustration by e-maintenance technologies and platforms. Annual Reviews in Control, 33(2), 220–229.

    Article  Google Scholar 

  11. Crespo-Marquez, A., & Iung, B. (2008). A review of e-maintenance capabilities and challenges. Journal on Systemics, Cybernetics and Informatics, 6, 162–166.

    Google Scholar 

  12. Abichou, B., Voisin, A., & Iung, B. (2012). Choquet integral parameters inference for health indicators fusion within multi-levels industrial systems: Application to components in series. IFAC Proceedings Volumes, 45(31), 193–198.

    Article  Google Scholar 

  13. Lorton, A., Fouladirad, M., & Grall, A. (2013). Computation of remaining useful life on a physic-based model and impact of a prognosis on the maintenance process. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 227, 434–449.

    Google Scholar 

  14. Espíndola, D., Fumagalli, L., Garetti, M., Botelho, S., & Pereira, C. (2011). Adaption of OSA-CBM Architecture for Human-Computer Interaction through Mixed Interface, INDIN 11 conference, Caparica, Lisbon, Portugal, 26–29 July 2011, 485–490.

    Google Scholar 

  15. Espíndola, D., Fumagalli, L., Garetti, M., Pereira, C. E., Botelho, S., & Ventura Henriques, R. (2013). A model-based approach for data integration to improve maintenance management by mixed reality. Computers in Industry, 64(4), 376–391.

    Article  Google Scholar 

  16. Mascolo, J., Nilsson, P., Iung, B., Levrat, E., Voisin, A., Krommenacker, N., et al. (2010). Industrial demonstrations of e-maintenance solutions. In E-maintenance (pp. 391–474). London: Springer.

    Chapter  Google Scholar 

  17. López-Campos, M. A., Márquez, A. C., & Fernández, J. F. G. (2013, June). Modelling using UML and BPMN the integration of open reliability, maintenance and condition monitoring management systems: An application in an electric transformer system. Computers in Industry, 64(5), 524–542.

    Google Scholar 

  18. Macchi, M., Barberá Martínez, L., Crespo Márquez, A., Holgado Granados, M., & Fumagalli, L. (2012). Value assessment of an e-maintenance platform. IFAC Proceedings Volumes, 45(31), 145–150.

    Article  Google Scholar 

  19. Macchi, M., Crespo Márquez, A., Holgado, M., Fumagalli, L., & Barberá Martínez, L. (2014). Value driven engineering of e-maintenance platforms. Special issue on Advanced Maintenance Engineering, Services and Technology. Journal of Manufacturing Technology Management, 25(4), 569–598.

    Google Scholar 

  20. Colace, C., Fumagalli, L., Pala, S., Macchi, M., Matarazzo, N. R., & Rondi, M. (2013). An intelligent maintenance system to improve safety of operations of an electric furnace in the steel making industry. Chemical Engineering, 33, 397–402.

    Google Scholar 

  21. Jardine Andrew, K. S., Daming, Lin, & Dragan, Banjevic. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510.

    Article  Google Scholar 

  22. Rondi, M., & Memoli, F. (2003). Increase of productivity in Dalmine steel plant through the application of innovative electrical and chemical technologies. La Metallurgia Italiana, 95(10), 53–60.

    Google Scholar 

  23. Lèger, A., Weber, P., Levrat, E., Duval, C., Farret, R., & Iung, B. (2009). Methodological developments for probabilistic risk analyses of socio-technical systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223, 313–332.

    Google Scholar 

  24. Villemeur, A. (1992). Reliability, availability, maintainability and safety assessment. Volume 1: Methods and techniques. New York: Wiley.

    Google Scholar 

  25. Flaus, J. M. (2008). A model-based approach for systematic risk analysis. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 222, 79–93.

    Article  Google Scholar 

  26. Center for Chemical Process Safety. (2008). Guidelines for Hazard evaluation procedures, 3rd ed., Wiley, ISBN: 978-0471978152.

    Google Scholar 

  27. Hyatt, N. (2003). Guidelines for process hazards analysis (PHA, HAZOP), hazards identification, and risk analysis. CRC Press, ISBN: 978-0849319099.

    Google Scholar 

  28. Ferro, L., Giugliano, P., Galbiati, P., Memoli, F., Giavani, C., & Maiolo, J. (2007). The electric arc furnace of Tenaris Dalmine: From the application of the new technologies of digital electrode regulation and multipoint injection to the dynamic control of the process. 16th IAS Steelmaking Conference, 6–8 November, Rosario, Argentina, pp. 59–72.

    Google Scholar 

  29. Swann, C. D., & Preston, M. L. (1995). Twenty-five years of HAZOP. Journal of Loss Prevention in Process Industries, 8(6), 349–353.

    Article  Google Scholar 

  30. New South Wales Government Department of Planning. (2008). HAZOP Guidelines, Hazardous Industry Planning Advisory Paper No 8.

    Google Scholar 

  31. Dunjó, J., Fthenakis, V., Vílchez, J. A., & Arnaldos, J. (2009). Hazard and operability (HAZOP) analysis. A literature review. Journal of Hazardous Materials, 173(1–3), 19–32.

    Google Scholar 

  32. Lawley, H. G. (1974). Operability studies and hazard analysis. Chemical Engineering Progress, 70(4), 45–56.

    Google Scholar 

  33. Weber, P., Medina-Oliva, G., Simon, C., & Iung, B. (2012). Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence, 25(4), 671–682.

    Article  Google Scholar 

  34. Labowsky, J., Svandova, Z., Markos, J., & Jelemensky, L. (2003). Model-based HAZOP study of a real MTBE plant. Journal of Loss Prevention in the Process Industries, 20, 230–237.

    Article  Google Scholar 

  35. Medina Oliva, G., Iung, B., Barberá, L., Viveros, P., Ruin, Y. (2012). Root cause analysis to identify physical causes. Proceedings of PSAM 2011 & ESREL, Helsinki, Finland, 25–29 June.

    Google Scholar 

  36. Machinery Information Management Open Systems Alliance (MIMOSA). (2008). OSA-CBM UML Specification 3.2.1 Release November 2008, viewed 30 September 2009. http://www.mimosa.org/.

  37. Memoli, F., Mapelli, C., Ravanelli, P., & Corbella, M. (2004). Simulation of oxygen penetration and decarburisation in EAF using supersonic injection system. ISIJ International, 44(8), 1342–1349.

    Article  Google Scholar 

  38. Fumagalli, L., Ierace, S., Dovere, E., Macchi, M., Cavalieri, S., & Garetti, M. (2011). Agile diagnostic tool based on electrical signature analysis. IFAC Proceedings Volumes, 44(1), 14067–14072.

    Article  Google Scholar 

  39. Uraikul, V., Chan, C. W., & Tontiwachwuthikul, P. (2007). Artificial intelligence for monitoring and supervisory control of process systems. Engineering Applications of Artificial Intelligence, 20, 115–131.

    Article  Google Scholar 

  40. Korbicz, J. (2006). Robust fault detection using analytical and soft computing methods. Bulletin of the Polish Academy of Sciences, Technical Sciences, 54(1), 75–88.

    MATH  Google Scholar 

  41. Ierace, S., Marinaro, P., Tatavitto, P., & Troiano, L. (2010). Profiling the power usage of industrial machinery by ANN. SoCPaR, 2010, 413–418.

    Google Scholar 

  42. Ierace, S., Pinto, R., Troiano, L., & Cavalieri, S. (2010). Neural network as an efficient prognostics tool: A case study in a textile company. IFAC Proceedings Volumes, 43(3), 122–127.

    Article  Google Scholar 

  43. Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston, MA: PWS Publishing.

    Google Scholar 

  44. Lowe, D., & Broomhead, D. (1988). Multivariable functional interpolation and adaptive networks. Complex systems, 2, 321–355.

    Google Scholar 

  45. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 3(20), 273–297.

    Google Scholar 

  46. Rasmussen, C. E. (2006). Gaussian processes for machine learning. MIT Press. ISBN 026218253X.

    Google Scholar 

  47. Crowder, S. V., & Hamilton, M. D. (1992). An EWMA for monitoring a process standard deviation. Journal of Quality Technology, 24, 12–21.

    Article  Google Scholar 

  48. Gan, F. F. (2011). An optimal design of CUSUM quality control charts. Journal of Quality Technology, 23, 279–286.

    Article  Google Scholar 

  49. IEC 62264:2003 Enterprise-control system integration.

    Google Scholar 

  50. Leger, J. B., Iung, B., Ferro De Beca, A., & Pinoteau, J. (1999). An innovative approach for new distributed maintenance system: Application to hydro power plants of the REMAFEX project. Computers in Industry, 38, 131–148.

    Google Scholar 

  51. Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for aircraft engine run-to-failure simulation. 1st International Conference on Prognostics and Health Management (PHM08), October 6–9, Denver, CO, pp. 1–9.

    Google Scholar 

  52. Bregon, A., Daigle, M., Roychoudhury, I., Biswas, G., Koutsoukos, X., & Pulido, B. (2014). An event-based distributed diagnosis framework using structural model decomposition. Artificial Intelligence, 210, 1–35.

    Article  Google Scholar 

Download references

Acknowledgements

The work has been developed within the scope of a project work of MeGMI, Master Executive in Gestione della Manutenzione Industriale—Executive Master on Industrial Maintenance Management, delivered by MIP—School of Management—Politecnico di Milano and SdM—School of Management Università degli Studi di Bergamo (www.mip.polimi.it/megmi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fumagalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colace, C., Fumagalli, L., Pala, S., Macchi, M., Matarazzo, N.R., Rondi, M. (2020). Implementation of a Condition Monitoring System on an Electric Arc Furnace Through a Risk-Based Methodology. In: Crespo Márquez, A., Macchi, M., Parlikad, A. (eds) Value Based and Intelligent Asset Management. Springer, Cham. https://doi.org/10.1007/978-3-030-20704-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20704-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20703-8

  • Online ISBN: 978-3-030-20704-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics