Skip to main content

Classification of Hyperspectral Images as Tensors Using Nonnegative CP Decomposition

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

A Hyperspectral Image (HSI) is an image that is acquired by means of spatial and spectral acquisitions, over an almost continuous spectrum. Pixelwise classification is an important application in HSI due to the natural spectral diversity that the latter brings. There are many works where spatial information (e.g., contextual relations in a spatial neighborhood) is exploited performing a so-called spectral-spatial classification. In this paper, the problem of spectral-spatial classification is addressed in a different manner. First a transformation based on morphological operators is used with an example on additive morphological decomposition (AMD), resulting in a 4-way block of data. The resulting model is identified using tensor decomposition. We take advantage of the compact form of the tensor decomposition to represent the data in order to finally perform a pixelwise classification. Experimental results show that the proposed method provides better performance in comparison to other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The number of ways of an array refers to the number of its indices. A HSI is typically a three-way array of dimensions \(I_1\times I_2\times J\), where \(I_1\) and \(I_2\) are space dimensions (i.e. pixels) and J denotes the number of spectral bands.

References

  1. Bruzzone, L., Carlin, L.: A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 44(9), 2587–2600 (2006)

    Article  Google Scholar 

  2. Duarte-Carvajalino, J.M., Sapiro, G., Vélez-Reyes, M., Castillo, P.E.: Multiscale representation and segmentation of hyperspectral imagery using geometric partial differential equations and algebraic multigrid methods. IEEE Trans. Geosci. Remote Sens. 46(8), 2418–2434 (2008)

    Article  Google Scholar 

  3. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 50(3), 809–823 (2012)

    Article  Google Scholar 

  4. Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L.: Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48(10), 3747–3762 (2010)

    Article  Google Scholar 

  5. Fauvel, M., Chanussot, J., Benediktsson, J.A.: A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recogn. 45(1), 381–392 (2012)

    Article  Google Scholar 

  6. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)

    Article  Google Scholar 

  7. Ghamisi, P., Dalla Mura, M., Benediktsson, J.A.: A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 53(5), 2335–2353 (2015)

    Article  Google Scholar 

  8. Ghamisi, P., et al.: Frontiers in spectral-spatial classification of hyperspectral images. IEEE Geosci. Remote Sens. Mag. (2018)

    Google Scholar 

  9. Benediktsson, J.A., Pesaresi, M., Amason, K.: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 41(9), 1940–1949 (2003)

    Article  Google Scholar 

  10. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)

    Article  Google Scholar 

  11. Dalla Mura, M., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: The evolution of the morphological profile: from panchromatic to hyperspectral images. In: Prasad, S., Bruce, L., Chanussot, J. (eds.) Optical Remote Sensing, pp. 123–146. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14212-3_8

    Chapter  Google Scholar 

  12. Cavallaro, G., Dalla Mura, M., Benediktsson, J.A., Plaza, A.: Remote sensing image classification using attribute filters defined over the tree of shapes. IEEE Trans. Geosci. Remote Sens. 54(7), 3899–3911 (2016)

    Article  Google Scholar 

  13. Velasco-Forero, S., Angulo, J.: Classification of hyperspectral images by tensor modeling and additive morphological decomposition. Pattern Recogn. 46(2), 566–577 (2013)

    Article  Google Scholar 

  14. Comon, P.: Tensors: a brief introduction. IEEE Sig. Proc. Mag. 31(3), 44–53 (2014). hal-00923279

    Article  Google Scholar 

  15. Huang, K., Sidiropoulos, N.D., Liavas, A.P.: A flexible and efficient algorithmic framework for constrained matrix and tensor factorization. IEEE Trans. Sign. Process. 64(19), 5052–5065 (2016)

    Article  MathSciNet  Google Scholar 

  16. Cohen, J., Farias, R.C., Comon, P.: Fast decomposition of large nonnegative tensors. IEEE Sign. Process. Lett. 22(7), 862–866 (2015)

    Article  Google Scholar 

  17. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Jouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jouni, M., Dalla Mura, M., Comon, P. (2019). Classification of Hyperspectral Images as Tensors Using Nonnegative CP Decomposition. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics