Skip to main content

Weighted Feature Pooling Network in Template-Based Recognition

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11365))

Included in the following conference series:

Abstract

Many computer vision tasks are template-based learning tasks in which multiple instances of a specific concept (e.g. multiple images of a subject’s face) are available at once to the learning algorithm. The template structure of the input data provides an opportunity for generating a robust and discriminative unified template-level representation that effectively exploits the inherent diversity of feature-level information across instances within a template. In contrast to other feature aggregation methods, we propose a new technique to dynamically predict weights that consider factors such as noise and redundancy in assessing the importance of image-level features and use those weights to appropriately aggregate the features into a single template-level representation. We present extensive experimental results on the MNIST, CIFAR10, UCF101, IJB-A, IJB-B, and Janus CS4 datasets to show that the new technique outperforms statistical feature pooling methods as well as other neural-network-based aggregation mechanisms on a broad set of tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py.

References

  1. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 529–534 (2011)

    Google Scholar 

  2. Klare, B.F., et al.: Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1931–1939 (2015)

    Google Scholar 

  3. Whitelam, C., et al.: IARPA Janus Benchmark-B face dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017)

    Google Scholar 

  4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Ma, L., Lu, J., Feng, J., Zhou, J.: Multiple feature fusion via weighted entropy for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3128–3136 (2015)

    Google Scholar 

  7. Hassner, T., et al.: Pooling faces: template based face recognition with pooled face images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 59–67 (2016)

    Google Scholar 

  8. Kawulok, M., Celebi, E., Smolka, B.: Advances in Face Detection and Facial Image Analysis. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25958-1

    Book  Google Scholar 

  9. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)

    Google Scholar 

  10. Yang, J., Ren, P., Chen, D., Wen, F., Li, H., Hua, G.: Neural aggregation network for video face recognition. arXiv preprint arXiv:1603.05474 (2016)

  11. Liao, Q., Leibo, J.Z., Poggio, T.: Learning invariant representations and applications to face verification. In: Advances in Neural Information Processing Systems, pp. 3057–3065 (2013)

    Google Scholar 

  12. Pal, D.K., Juefei-Xu, F., Savvides, M.: Discriminative invariant kernel features: a bells-and-whistles-free approach to unsupervised face recognition and pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5590–5599 (2016)

    Google Scholar 

  13. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

  14. Wang, P., Cao, Y., Shen, C., Liu, L., Shen, H.T.: Temporal pyramid pooling based convolutional neural networks for action recognition. arXiv preprint arXiv:1503.01224 (2015)

  15. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention. arXiv preprint arXiv:1511.04119 (2015)

  16. Alkinani, M.H., El-Sakka, M.R.: Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction. EURASIP J. Image Video Process. 2017, 58 (2017)

    Article  Google Scholar 

  17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  18. AbdAlmageed, W., et al.: Face recognition using deep multi-pose representations. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 1–9 (2016)

    Google Scholar 

  19. Liu, S., Deng, W.: Very deep convolutional neural network based image classification using small training sample size. In: Proceedings of the IEEE Asian Conference on Pattern Recognition, pp. 730–734 (2015)

    Google Scholar 

  20. Masi, I., Tran, A.T., Hassner, T., Leksut, J.T., Medioni, G.: Do we really need to collect millions of faces for effective face recognition? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 579–596. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_35

    Chapter  Google Scholar 

  21. Crosswhite, N., Byrne, J., Stauffer, C., Parkhi, O., Cao, Q., Zisserman, A.: Template adaptation for face verification and identification. In: Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition, pp. 1–8. IEEE (2017)

    Google Scholar 

  22. Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: Proceedings of the British Machine Vision Conference, vol. 1, p. 6 (2015)

    Google Scholar 

  23. Sankaranarayanan, S., Alavi, A., Castillo, C.D., Chellappa, R.: Triplet probabilistic embedding for face verification and clustering. In: Proceedings of the IEEE International Conference on Biometrics Theory, Applications and Systems, pp. 1–8 (2016)

    Google Scholar 

  24. Masi, I., Hassner, T., Tran, A.T., Medioni, G.: Rapid synthesis of massive face sets for improved face recognition. In: Proceedings of the IEEE Automatic Face & Gesture Recognition, pp. 604–611 (2017)

    Google Scholar 

  25. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  26. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  27. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  28. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 4724–4733 (2017)

    Google Scholar 

  29. Pérez, J.S., Meinhardt-Llopis, E., Facciolo, G.: Tv-l1 optical flow estimation. Image Process. On Line 2013, 137–150 (2013)

    Article  Google Scholar 

  30. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  31. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  32. Zhu, Y., Lan, Z., Newsam, S., Hauptmann, A.G.: Hidden two-stream convolutional networks for action recognition. arXiv preprint arXiv:1704.00389 (2017)

Download references

Acknowledgments

This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA 2014-14071600011. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright annotation thereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Wu, Y., Abd-Almageed, W., Natarajan, P. (2019). Weighted Feature Pooling Network in Template-Based Recognition. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics