Skip to main content

Surface Effects

  • Chapter
  • First Online:
Thermodynamics in Earth and Planetary Sciences
  • 1314 Accesses

Abstract

This chapter deals with the thermodynamics of the surface properties of a phase and their applications to a variety of problems of interest in the Earth and Planetary sciences. The topics include adsorption and adsorption mediated chemical reactions of gaseous species on mineral surfaces, crack propagation, equilibrium shapes of crystals, connectivity of melt in a solid matrix, nucleation and crystal growth, microstructures of metals in meteorites, coarsening of exsolution lamellae as a function of time and temperature, effect of particle size on solubility, subsolidus stability and melting of solids along with the implication of the latter to fault movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asaduzzaman A, Muralidharan K, Ganguly J (2015) Incorporation of water into olivine during nebular condensation: insights from density functional theory and thermodynamics, and implications for phyllosilicate formation and terrestrial water inventory. Meteorit Planet Sci 50:578–589

    Google Scholar 

  • Atherton MP (1976) Crystal growth models in metamorphic tectonites. Phil Trans Royal Soc London A 283:255–270

    Google Scholar 

  • Balau JR, Waff HS, Tyburczy JA (1979) Mechanical and thermodynamic constraints on fluid distribution in partial melts. J Geophys Res 84:6102–6114

    Google Scholar 

  • Becke F (1913) Uber Mineralbestand und Structur der Krystallinischen Schiefer. Ksehr Akad Wiss Wien 78:1–53

    Google Scholar 

  • Berner RA (1969) Goethite stability and the origin of red beds. Geochim Cosmochim Acta 33:267–273

    Google Scholar 

  • Brady J (1987) Coarsening of fine-scale exsolution lamellae. Am Min 72:697–706

    Google Scholar 

  • Bruhn D, Groebner N, Kohlstedt DL (2000) An interconnected network of core-forming melts produced by shear deformation. Nature 403:883–886

    Google Scholar 

  • Buffat P, Borel JP (1976) Size effect on melting temperature of gold particles. Phys Rev A13:2287–2298

    Google Scholar 

  • Cahn JW (1979) Thermodynamics of solid and fluid surfaces. In: Johnson WC, Blakely JM (eds) Interfacial segregation. American Inst Metals, Ohio, pp 3–24

    Google Scholar 

  • Carlson WD (1999) The case against Ostwald ripening of porphyroblasts. Canad Miner 37:403–413

    Google Scholar 

  • Cashman KV, Ferry JM (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. 3. Metamorphic crystallization. Contrib Miner Petrol 99:401–415

    Google Scholar 

  • Curie P (1885) Sur la formation des crustaux et sur les constantes capillaires de leurs différentes faces. Soc Minéral France Bull 8:145–150

    Google Scholar 

  • Denbigh K (1981) The principles of chemical equilibrium, Dover

    Google Scholar 

  • Di Toro G, Hirose T, Nielson S, Pennachioni G, Shimamoto T (2006) Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311:647–649

    Google Scholar 

  • Dunning JD, Petrovski D, Schuyler J, Owens A (1984) The effects of aqueous chemical environments on crack propagation in quartz. J Geophys Res 89:4115–4123

    Google Scholar 

  • Gaetani GA, Grove TL (1999) Wetting of mantle olivine by sulfide melt: implications for Re/Os ratios in mantle peridotite and late-stage core formation. Earth Planet Sci Lett 169:147–163

    Google Scholar 

  • Ganguly J, Cheng W, Tirone M (1996) Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contrib Miner Petrol 126:137–151

    Google Scholar 

  • Halden FH, Kingery WD (1955) Surface tension at elevated temperatures. II. Effect of carbon, nitrogen, oxygen, and sulfur on liquid-iron surface tension and interfacial energy with alumina. J Phys Chem 59:557–559

    Google Scholar 

  • Herring C (1953) The use of classical macroscopic concepts in surface-energy problems. In: Gomer G, Smith CS (eds) Structure and properties of solid surfaces. The University of Chicago Press, pp 5–72

    Google Scholar 

  • Hess P (1994) Thermodynamics of thin films. J Geophys Res 99:7219–7229

    Google Scholar 

  • Holness MB (1993) Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of adsorbed H2O on the permeability of quartzites. Earth Planet Sci Lett 117:363–377

    Google Scholar 

  • Hopfe WD, Goldstein JI (2001) The metallographic cooling rate method revised: application to iron meteorites and mesosiderites. Meteorit Planet Sci 36:135–154

    Google Scholar 

  • Hudon P, Jung I-H, Baker DR (2002) Melting of β-quartz up to 2.0 GPa and thermodynamic optimization of silica liquidus up to 6.0 GPa. Phys Earth Planet Inter 130:159–174

    Google Scholar 

  • Joesten RL (1991) Kinetics of coarsening and diffusion-controlled mineral growth. Rev Min 26:507–582

    Google Scholar 

  • Jurewicz SR, Jurewicz JG (1986) Distribution of apparent angles on random sections with emphasis on dihedral angle measurements. J Geophys Res 91:9277–9282

    Google Scholar 

  • Jurewicz SR, Watson EB (1985) Distribution of partial melt in a granitic system. Geochim Cosmochim Acta 49:1109–11121

    Google Scholar 

  • Kohlstedt DL (1992) Structure, rheology and permeability of partially molten rocks at low melt fractions. In: Morgan JP (ed) Mantle flow and melt generation. Geophys Monograph 71, Am Geophys Union, pp 103–121

    Google Scholar 

  • Kretz R (1966) Interpretation of shapes of mineral grains in metamorphic rocks. J Petrol 7:68–94

    Google Scholar 

  • Kretz R (1994) Metamorphic crystallization. Wiley, p 507

    Google Scholar 

  • Kretz R (2006) Shape, size, spatial distribution and composition of garnet crystals in highly deformed gneiss of the Otter Lake area, Québec, and a model for garnet crystallization. J Met Geol 24:431–449

    Google Scholar 

  • Langmuir D (1971) Particle size effect on the reaction goethite = hematite + water. Am J Sci 271:147–156

    Google Scholar 

  • Lasaga AC (1998) Kinetic theory in earth sciences. Princeton University Press, New Jersey, p 811

    Google Scholar 

  • Lawn B, Wilshaw T (1975) Fracture of brittle solids. Canbridge, New York

    Google Scholar 

  • Lee SK, Han R, Kim EJ, Jeong GJ, Khim H, Hirose T (2017) Quasi-equilibrium melting of quartzite upon extreme friction. Nat Geosci 10:436–441

    Google Scholar 

  • Li L, Tsukamoto K, Sunagawa I (1990) Impurity adsorption and habit changes in aqueous solution grown KCl crystals. J Cryst Growth 99:150–155

    Google Scholar 

  • McHale JM, Auroux A, Perrotta AJ, Navrotsky A (1997) Surface energies and thermodynamic phase stabilities in nanocrystalline aluminas. Science 277:788–791

    Google Scholar 

  • McKenzie D, Brune JN (1972) Melting on fault planes during large earthquakes. Geophys J Roy Astron Soc 29:65–78

    Google Scholar 

  • Miyazaki K (1991) Ostwald ripening of garnet in high P/T metamorphic rocks. Contr Miner Petrol 108:118–128

    Google Scholar 

  • Mueller RF, Saxena SK (1977) Chemical petrology. Springer, Berlin, p 394

    Google Scholar 

  • Navrotsky A (2002) Thermochemistry, energetic modelling, and systematics. In: Gramaciolli CM (ed) Energy modelling in minerals, vol 14. European mineralogical union. Eötvös University Press, Budapest, Hungary, pp 5–26

    Google Scholar 

  • Parks GA (1984) Surface and interfacial free energies of quartz. J Geophys Res 89:3997–4008

    Google Scholar 

  • Passeron A, Sangiorgi R (1985) Solid-liquid interfacial tensions by the dihedral angle method. A mathematical approach. Acta Metall 33:771–776

    Google Scholar 

  • Philpotts AR (1990) Principles of igneous and metamorphic petrology. Prentice Hall, New Jersey, p 498

    Google Scholar 

  • Raghaven V, Cohen M (1975) Solid state phase transformations. In: Hannay NB (ed) Treatise on solid state chemistry, vol 5. Plenum Press, New York

    Google Scholar 

  • Reisener RJ, Goldstein JI (2003) Ordinary chondrite metallography: Part 1. Fe-Ni taenite cooling experiments. Meteorit Planet Sci 38:1669–1678

    Google Scholar 

  • Reisener RJ, Goldstein JI, Pataev MI (2006) Olivine zoning and retrograde olivine -orthopyroxene-metal equilibration in H5 and H6 chondrites. Meteorit Planet Sci 41:1839–1852

    Google Scholar 

  • Rose LA, Brenan JM (2001) Wetting properties of Fe-Ni-Co-O-S melts against olivine: implications for sulfide melt mobility. Econ Geol Bull Soc Econ Geol 145–157

    Google Scholar 

  • Rosenberg R (2005) Why ice is slippery? Phys Today 58: 50–55

    Google Scholar 

  • Saxena SK, Hrubiak R (2014) Mapping the nebular condensates and chemical composition of the terrestrial planets. Earth Planet Sci Lett 393–119

    Google Scholar 

  • Schwartz JM, McCallum IS (2005) Comparative study of equilibrated and unequilibrated eucrites: subsolidus thermal histories of Haraiya and Pasamonte. Am Miner 90:1871–1886

    Google Scholar 

  • Shand SJ (1917) The pseudotachylite of Parijs (Orange Free state), and its relation to “trapp- shotten-gneiss” and “flinty-crush-rock”. Geol Soc London Q J 72:198–221

    Google Scholar 

  • Smith CS (1964) Some elementary principles of polycrystalline microstructures. Met Rev 9:1–48

    Google Scholar 

  • Spray JG (2005) Evidence for melt lubrication during large earthquakes. Geophys Res Lett 32:L07301–L07305

    Google Scholar 

  • Sunagawa I (1957) Variation in crystal habit of pyrite. Jap Geol Surv Rep 175:41

    Google Scholar 

  • Terasaki H, Frost DJ, Rubie DC, Langenhorst F (2005) The effect of oxygen and sulfur on the dihedral angle between Fe-O-S melt and silicate minerals at high pressure: implications for Martian core formation. Earth Planet Sci Lett 232:379–392

    Google Scholar 

  • Toramuru A, Fuji N (1986) Connectivity of melt phase in a partially molten peridotite. J Geophys Res 91:9239–9252

    Google Scholar 

  • von Bergen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations and equilibrium microstructures. J Geophys Res 91:9261–9276

    Google Scholar 

  • Waff HS, Bulau JR (1982) Experimental determination of near equilibrium textures in partially molten silicates at high pressures. In: Akimoto S, Manghnani MH (eds) High pressure research in geophysics. Center for Academic Publications, Tokyo, pp 229–236

    Google Scholar 

  • Wood JA (1964) The cooling rates and parent planets of several meteorites. Icarus 3:429–459

    Google Scholar 

  • Yund RA, Davidson P (1978) Kinetics of lamellar coarsening in cryptoperthites. Am Miner 63:470–477

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibamitra Ganguly .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganguly, J. (2020). Surface Effects. In: Thermodynamics in Earth and Planetary Sciences. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-20879-0_13

Download citation

Publish with us

Policies and ethics