Skip to main content

Neuro-Symbolic Hybrid Systems for Industry 4.0: A Systematic Mapping Study

  • Conference paper
  • First Online:
Knowledge Management in Organizations (KMO 2019)

Abstract

Neuro-symbolic hybrid systems (NSHS) have been used in several research areas to obtain powerful intelligent systems. A systematic mapping study was conducted, searching studies published from January 2011 to May 2018 in three author databases defining four research questions and three search strings. With the results a literature review was made to generate a map with main trends and contributions about the use of NSHS in Industry 4.0. An evaluation rubric based on the work of Petersen et al. (2015) was applied too. In a first exploratory search 544 papers was found, but only 330 had relation with research theme. After this first classification a second filter was applied to identify repeated articles or which had not relevance for solve the research questions, obtaining 118. Finally, 50 primary studies was selected. This paper is a guide aimed at researching and obtaining evidence on the shortage of publications and contributions about the use of neuro symbolic hybrid systems applied in Industry 4.0 environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramezani, J., Jassbi, J.: A hybrid expert decision support system based on artificial neural networks in process control of plaster production – an industry 4.0 perspective. In: Camarinha-Matos, Luis M., Parreira-Rocha, M., Ramezani, J. (eds.) DoCEIS 2017. IAICT, vol. 499, pp. 55–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56077-9_5

    Chapter  Google Scholar 

  2. Fdez-Riverola, F., Corchado, J.M.: Sistemas híbridos neuro-simbólicos: una revisión. Rev. Iberoam. Intel. Artif. 4, 12–26 (2000)

    Google Scholar 

  3. Sahin, S., Tolun, M.R., Hassanpour, R.: Hybrid expert systems: a survey of current approaches and applications. Expert Syst. Appl. 39, 4609–4617 (2012)

    Article  Google Scholar 

  4. Wortmann, A., Combemale, B., Barais, O.: A systematic mapping study on modeling for industry 4.0. In: 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems, pp. 281–291 (2017)

    Google Scholar 

  5. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: 12th International Conference on Evaluation and Assessment in Software Engineering, vol. 17, p. 10 (2008)

    Google Scholar 

  6. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015)

    Article  Google Scholar 

  7. Salehi, S., Selamat, A., Fujita, H.: Systematic mapping study on granular computing. Knowl. Based Syst. 80, 78–97 (2015)

    Article  Google Scholar 

  8. Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a systematic mapping study. Inf. Softw. Technol. 71, 77–91 (2015)

    Article  Google Scholar 

  9. Kitchenham, B.A., Budgen, D., Pearl Brereton, O.: Using mapping studies as the basis for further research - a participant-observer case study. Inf. Softw. Technol. 53, 638–651 (2011)

    Article  Google Scholar 

  10. Macchi, D., Solari, M.: Mapeo Sistemático de la Literatura sobre la Adopción de Inspecciones de Software. In: Conf. Latinoam. Informática (CLEI 2012), pp. 1–8 (2012)

    Google Scholar 

  11. Fdez-Riverola, F., Corchado, J.M.: Forecasting red tides using an hybrid neuro-symbolic system. AI Commun. 16, 221–233 (2003)

    MathSciNet  Google Scholar 

  12. Osório, F.S., Amy, B.: INSS: a hybrid system for constructive machine learning. Neurocomputing 28, 191–205 (1999)

    Article  Google Scholar 

  13. Medsker, L.R.: Hybrid Intelligent Systems. Springer, Boston (2012). https://doi.org/10.1007/978-1-4615-2353-6

    Book  MATH  Google Scholar 

  14. Hatzilygeroudis, I., Prentzas, J.: Symbolic-neural rule based reasoning and explanation. Expert Syst. Appl. 42, 4595–4609 (2015)

    Article  Google Scholar 

  15. Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowl. Based Syst. 16, 321–328 (2003)

    Article  Google Scholar 

  16. González-Briones, A., Chamoso, P., Yoe, H., Corchado, J.M.: GreenVMAS: virtual organization based platform for heating greenhouses using waste energy from power plants. Sensors 18(3), 861 (2018)

    Article  Google Scholar 

  17. Vaidya, S., Ambad, P., Bhosle, S.: Industry 4.0 - a glimpse. Procedia Manuf. 20, 233–238 (2018)

    Article  Google Scholar 

  18. Bahrin, M.A.K., Othman, M.F., Azli, N.H.N., Talib, M.F.: Industry 4.0: a review on industrial automation and robotic. J. Teknol. 78, 137–143 (2016)

    Google Scholar 

  19. Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wireless Commun. Mob. Comput. 2018, 17 (2018)

    Article  Google Scholar 

  20. Gonzalez-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., Corchado, J.M.: Energy optimization using a case-based reasoning strategy. Sensors (Basel) 18(3), 865 (2018). https://doi.org/10.3390/s18030865

    Article  Google Scholar 

  21. Lorenz, M., Rüßmann, M., Strack, R., Lueth, K.L., Bolle, M.: Man and Machine in Industry 4.0 (2015)

    Google Scholar 

  22. Montalvillo, L., Díaz, O.: Requirement-driven evolution in software product lines: a systematic mapping study. J. Syst. Softw. 122, 110–143 (2016)

    Article  Google Scholar 

  23. Budgen, D., Turner, M., Brereton, O.P., Kitchenham, B.A.: Using mapping studies in software engineering. In: XX Annual Meeting of the Psychology of Programming Interest Group (PPIG 2008), pp. 195–204 (2008)

    Google Scholar 

  24. Tofan, D., Galster, M., Avgeriou, P., Schuitema, W.: Past and future of software architectural decisions – a systematic mapping study. Inf. Softw. Technol. 56, 850–872 (2014)

    Article  Google Scholar 

  25. Dallasega, P., Rauch, E., Linder, C.: Industry 4.0 as an enabler of proximity for construction supply chains: a systematic literature review (2018). https://www.sciencedirect.com/science/article/pii/S0166361517305043?via%3Dihub

  26. Liao, Y., Deschamps, F., de Loures, E.F.R., Ramos, L.F.P.: Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal. Int. J. Prod. Res. 55, 3609–3629 (2017)

    Article  Google Scholar 

  27. Sittón, I., Rodríguez, S.: Pattern extraction for the design of predictive models in industry 4.0. In: De la Prieta, F., Vale, Z., Antunes, L., Pinto, T., Campbell, Andrew T., Julián, V., Neves, Antonio J.R., Moreno, María N. (eds.) PAAMS 2017. AISC, vol. 619, pp. 258–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61578-3_31

    Chapter  Google Scholar 

  28. Kang, H.S., et al.: Do: smart manufacturing: past research, present findings, and future directions. Int. J. Precis. Eng. Manuf. Technol. 3, 111–128 (2016)

    Article  Google Scholar 

  29. Rojko, A.: Industry 4.0 concept: background and overview. Int. J. Interact. Mob. Technol. 11, 77 (2017)

    Article  Google Scholar 

  30. Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent manufacturing in the context of industry 4.0: a review. Engineering 3, 616–630 (2017)

    Article  Google Scholar 

  31. Hozdić, E.: Smart factory for industry 4.0: a review. Int. J. Mod. Manuf. Technol. 7, 28–35 (2015)

    Google Scholar 

  32. Strozzi, F., Colicchia, C., Creazza, A., Noè, C.: Literature review on the ‘Smart Factory’ concept using bibliometric tools. Int. J. Prod. Res. 55, 6572–6591 (2017)

    Article  Google Scholar 

  33. Buer, S.-V., Strandhagen, J.O., Chan, F.T.S.: The link between Industry 4.0 and lean manufacturing: mapping current research and establishing a research agenda. Int. J. Prod. Res. 56, 2924–2940 (2018)

    Article  Google Scholar 

  34. Zheng, P., et al.: Smart manufacturing systems for Industry 4.0: conceptual framework, scenarios, and future perspectives. Front. Mech. Eng. 13(2), 137–150 (2018)

    Article  Google Scholar 

  35. Bullón, J., Arrieta, A.G., Encinas, A.H., Dios, A.Q.: Manufacturing processes in the textile industry. Expert systems for fabrics production. Adv. Distrib. Comput. Artif. Intell. J. 6(1), 41–50 (2017). (ISSN: 2255-2863), Salamanca

    Google Scholar 

  36. Thames, L., Schaefer, D.: Industry 4.0: an overview of key benefits, technologies, and challenges. In: Thames, L., Schaefer, D. (eds.) Cybersecurity for Industry 4.0. SSAM, pp. 1–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50660-9_1

    Chapter  Google Scholar 

  37. Oesterreich, T.D., Teuteberg, F.: Understanding the implications of digitisation and automation in the context of Industry 4.0: a triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 83, 121–139 (2016)

    Article  Google Scholar 

  38. Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues (2017). https://ac.els-cdn.com/S2452414X17300043/1-s2.0-S2452414X17300043-main.pdf?_tid=b8739e67-e22b-4158-a461-b5d97792ef90&acdnat=1525088363_5dcfb9a52f3e0e3732e67a69a27458ef

  39. Liu, Y., Xu, X.: Industry 4.0 and cloud manufacturing: a comparative analysis. J. Manuf. Sci. Eng. 139, 34701 (2017)

    Article  Google Scholar 

  40. Yang, S., Bian, C., Li, X., Tan, L., Tang, D.: Optimized fault diagnosis based on FMEA-style CBR and BN for embedded software system. Int. J. Adv. Manuf. Technol. 94, 3441–3453 (2018)

    Article  Google Scholar 

  41. Kim, D., et al.: A hybrid failure diagnosis and prediction using natural language-based process map and rule-based expert system. Int. J. Comput. Commun. Control 5, 1841–9836 (2017)

    Google Scholar 

  42. Chang, P.-C., Lin, J.-J., Dzan, W.-Y., Chang, P.-C., Lin, J.-J., Dzan, W.-Y.: Forecasting of manufacturing cost in mobile phone products by case-based reasoning and artificial neural network models. J Intell. Manuf. 23, 517–531 (2012)

    Article  Google Scholar 

  43. Piltan, M., Mehmanchi, E., Ghaderi, S.F.: Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems. Expert Syst. Appl. 39, 1124–1133 (2012)

    Article  Google Scholar 

  44. Zarandi, M.H.F., Mansour, S., Hosseinijou, S.A., Avazbeigi, M.: A material selection methodology and expert system for sustainable product design. Int. J. Adv. Manuf. Technol. 57, 885–903 (2011)

    Article  Google Scholar 

  45. Bahrammirzaee, A., et al.: Hybrid credit ranking intelligent system using expert system and artificial neural networks. Appl. Intell. 34, 28–46 (2011)

    Article  Google Scholar 

  46. Yazdi, M.: Hybrid probabilistic risk assessment using Fuzzy FTA and Fuzzy AHP in a process industry. J. Fail. Anal. Prev. 17, 756–764 (2017)

    Article  Google Scholar 

  47. Pask, F., Lake, P., Yang, A., Tokos, H., Sadhukhan, J.: Sustainability indicators for industrial ovens and assessment using Fuzzy set theory and Monte Carlo simulation. J. Clean. Prod. 140, 1217–1225 (2017)

    Article  Google Scholar 

  48. Karelovic, P., Putz, E., Cipriano, A.: A framework for hybrid model predictive control in mineral processing. Control Eng. Pract. 40, 1–12 (2015)

    Article  Google Scholar 

  49. Sáiz-Bárcena, L., Herrero, A., Del Campo, M.A.M., Del Olmo Martínez, R.: Easing knowledge management in the power sector by means of a neuro-genetic system. Int. J. Bio-Inspired Comput. 7, 170–175 (2015)

    Article  Google Scholar 

  50. Fazel Zarandi, M.H., Gamasaee, R., Turksen, I.B.: A type-2 fuzzy expert system based on a hybrid inference method for steel industry. Int. J. Adv. Manuf. Technol. 71(5–8), 857–885 (2013)

    Google Scholar 

  51. Van Pham, H., Tran, K.D., Kamei, K.: Applications using hybrid intelligent decision support systems for selection of alternatives under uncertainty and risk. Int. J. Innov. Comput. Inf. Control 10, 39–56 (2014)

    Google Scholar 

  52. Shahrabi, J., Hadavandi, E., Asadi, S.: Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series. Knowl. Based Syst. 43, 112–122 (2013)

    Article  Google Scholar 

  53. Vogel-Heuser, B., Legat, C., Folmer, J., Schütz, D.: An assessment of the potentials and challenges in future approaches for automation software. In: Leitao, P., Karsnouskos, S. (eds.) Industrial Agents: Emerging Applications of Software Agents in Industry. p. 476. Elsevier Inc. (2015). https://doi.org/10.1016/C2013-0-15269-5

  54. Prentzas, J., Hatzilygeroudis, I.: Assessment of life insurance applications: an approach integrating neuro-symbolic rule-based with case-based reasoning. Expert Syst. 33, 145–160 (2016)

    Article  Google Scholar 

  55. Prentzas, J., Hatzilygeroudis, I.: Using clustering algorithms to improve the production of symbolic-neural rule bases from empirical data. Int. J. Artif. Intell. Tools 27, 1850002 (2018)

    Article  Google Scholar 

  56. Hatzilygeroudis, I., Prentzas, J.: Symbolic-neural rule based reasoning and explanation. Expert Syst. Appl. Int. J. 42, 4595–4609 (2015)

    Article  Google Scholar 

  57. Kasabov, N.K.: Evolving connectionist systems for adaptive learning and knowledge discovery: trends and directions. Knowl. Based Syst. 80, 24–33 (2015)

    Article  Google Scholar 

  58. Prentzas, J., Hatzilygeroudis, I.: Improving efficiency of merging symbolic rules into integrated rules: splitting methods and mergability criteria. Expert Syst. Appl. 32, 244–260 (2015)

    Article  Google Scholar 

  59. Elhoseny, M., Abdelaziz, A., Salama, A.S., Riad, A.M., Muhammad, K., Sangaiah, A.K.: A hybrid model of Internet of Things and cloud computing to manage big data in health services applications. Future Gener. Comput. Syst. 86, 1383–1394 (2018)

    Article  Google Scholar 

  60. Shihabudheen, K.V., Pillai, G.N.: Recent advances in neuro-fuzzy system: a survey. Knowl. Based Syst. 152, 136–162 (2018)

    Article  Google Scholar 

  61. Liao, Y., Felipe Pierin Ramos, L., Saturno, M., Deschamps, F., de Freitas Rocha Loures, E., Luis Szejka, A.: The role of interoperability in the fourth industrial revolution era. IFAC PapersOnline 50, 12434–12439 (2017)

    Article  Google Scholar 

  62. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios (2016)

    Google Scholar 

  63. Trotta, D., Garengo, P.: Industry 4.0 key research topics: a bibliometric review. In: 2018 7th International Conference on Industrial Technology and Management (ICITM), pp. 113–117 (2018)

    Google Scholar 

  64. Simas, O., Rodrigues, J.C.: The implementation of industry 4.0: a literature review. In: Proceedings of International Conference on Computers and Industrial Engineering, CIE (2017)

    Google Scholar 

  65. Pereira, A.C., Romero, F.: A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf. 13, 1206–1214 (2017)

    Article  Google Scholar 

  66. Martín, A.M., Marcos, M., Aguayo, F., Lama, J.R.: Smart industrial metabolism: a literature review and future directions. Procedia Manuf. 13, 1223–1228 (2017)

    Article  Google Scholar 

  67. Dequeant, K., Vialletelle, P., Lemaire, P., Espinouse, M.-L.: A literature review on variability in semiconductor manufacturing: the next forward leap to Industry 4.0. In: Proceedings of the 2016 Winter Simulation Conference, pp. 2598–2609 (2016)

    Google Scholar 

  68. Santos, C., Mehrsai, A., Barros, A.C., Araújo, M., Ares, E.: Towards industry 4.0: an overview of European strategic roadmaps. Procedia Manuf. 13, 972–979 (2017)

    Article  Google Scholar 

  69. Barreto, L., Amaral, A., Pereira, T.: Industry 4.0 implications in logistics: an overview. Procedia Manuf. 13, 1245–1252 (2017)

    Article  Google Scholar 

  70. Casado-Vara, R., Novais, P., Gil, A.B., Prieto, J., Corchado, J.M.: Distributed continuous-time fault estimation control for multiple devices in IoT networks. IEEE Access 7, 11972–11984 (2019). https://doi.org/10.1109/ACCESS.2019.2892905

    Article  Google Scholar 

  71. Bassi, L.: Industry 4.0: Hope, hype or revolution? In: 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), pp. 1–6 (2017)

    Google Scholar 

  72. Ben Said, A., Shahzad, M.K., Zamai, E., Hubac, S., Tollenaere, M.: Towards proactive maintenance actions scheduling in the Semiconductor Industry (SI) using Bayesian approach. IFAC-PapersOnLine 49, 544–549 (2016)

    Article  Google Scholar 

  73. Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl. Based Syst. 137, 54–64 (2017)

    Article  Google Scholar 

  74. Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management. Inf. Fusion 49, 227–239 (2019)

    Article  Google Scholar 

  75. Pham, H.V., Tran, K.D., Kamei, K.: Applications using hybrid intelligent decision support systems for selection of alternatives under uncertainty and risk. Int. J. Innov. Comput. Inf. Control ICIC 10, 39–56 (2014)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by project IOTEC: “Development of Technological Capacities around the Industrial Application of Internet of Things (IoT)”. 0123-IOTEC-3-E. Project financed with FEDER funds, Interreg Spain-Portugal (PocTep). Inés Sittón-Candanedo has been supported by IFARHU – SENACYT scholarship program (Government of Panama).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Sittón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sittón, I., Alonso, R.S., Hernández-Nieves, E., Rodríguez-Gonzalez, S., Rivas, A. (2019). Neuro-Symbolic Hybrid Systems for Industry 4.0: A Systematic Mapping Study. In: Uden, L., Ting, IH., Corchado, J. (eds) Knowledge Management in Organizations. KMO 2019. Communications in Computer and Information Science, vol 1027. Springer, Cham. https://doi.org/10.1007/978-3-030-21451-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21451-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21450-0

  • Online ISBN: 978-3-030-21451-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics