Skip to main content

Red Blood Cell Transfusion in Pediatric Acute Respiratory Distress Syndrome

  • Chapter
  • First Online:
Pediatric Acute Respiratory Distress Syndrome

Abstract

In the patient with ARDS, as lung function deteriorates, RBC transfusion is often prescribed in an effort to increase oxygen delivery. Though transfusion can increase oxygen delivery, RBC transfusion is associated with worsened markers of lung function and with adverse clinical outcomes in critically ill adults and children, and preclinical data suggest that RBC products can directly injure pulmonary cells and worsen lung function by a variety of mechanisms. This chapter outlines clinical studies of RBC transfusion in pediatric ARDS (PARDS), reviews RBC transfusion-related pathophysiology as it relates to the patient with PARDS, and highlights opportunities for future research to guide optimum transfusion strategies for critically ill children with PARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALI:

Acute lung injury

ARDS:

Acute respiratory distress syndrome

CFH:

Cell-free hemoglobin

NO:

Nitric oxide

RBC:

Red blood cell

TACO:

Transfusion-associated circulatory overload

TLR-4:

Toll-like receptor-4

TRALI:

Transfusion-related acute lung injury

TRIM:

Transfusion-related immunomodulation

References

  1. Janz DR, Bastarache JA, Sills G, et al. Association between haptoglobin, hemopexin and mortality in adults with sepsis. Crit Care. 2013;17(6):R272.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Janz DR, Ware LB. The role of red blood cells and cell-free hemoglobin in the pathogenesis of ARDS. J Intensive Care. 2015;3:20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khemani RG, Smith LS, Zimmerman JJ, Erickson S, Pediatric Acute Lung Injury Consensus Conference G. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S23–40.

    Article  PubMed  Google Scholar 

  4. Khemani RG, Smith L, Lopez-Fernandez YM, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115–28.

    Article  PubMed  Google Scholar 

  5. Zubrow ME, Thomas NJ, Friedman DF, Yehya N. RBC transfusions are associated with prolonged mechanical ventilation in pediatric acute respiratory distress syndrome. Pediatr Crit Care Med. 2018;19(2):e88–96.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Du Pont-Thibodeau G, Tucci M, Ducruet T, Lacroix J. Survey on stated transfusion practices in PICUs∗. Pediatr Crit Care Med. 2014;15(5):409–16.

    Article  PubMed  Google Scholar 

  7. Kleiber N, Lefebvre E, Gauvin F, et al. Respiratory dysfunction associated with RBC transfusion in critically ill children: a prospective cohort study. Pediatr Crit Care Med. 2015;16(4):325–34.

    Article  PubMed  Google Scholar 

  8. Rajasekaran S, Sanfilippo D, Shoemaker A, et al. Respiratory impairment after early red cell transfusion in pediatric patients with ALI/ARDS. Crit Care Res Pract. 2012;2012:646473.

    PubMed  PubMed Central  Google Scholar 

  9. de Roulet A, Burke RV, Lim J, Papillon S, Bliss DW, Ford HR, Upperman JS, Inaba K, Jensen AR. Pediatric trauma-associated acute respiratory distress syndrome: Incidence, risk factors, and outcomes. J Pediatr Surg. 2018; https://doi.org/10.1016/j.jpedsurg.2018.07.005. pii: S0022-3468(18)30434-2.

    Article  PubMed  Google Scholar 

  10. Demaret P, Tucci M, Karam O, Trottier H, Ducruet T, Lacroix J. Clinical outcomes associated with RBC transfusions in critically ill children: a 1-year prospective study. Pediatr Crit Care Med. 2015;16(6):505–14.

    Article  PubMed  Google Scholar 

  11. Bernard GR, Artigas A, Brigham KL, et al. The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3. Pt 1):818–24.

    Article  CAS  PubMed  Google Scholar 

  12. Gaggar A, Patel RP. There is blood in the water: hemolysis, hemoglobin, and heme in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;311(4):L714–8.

    Article  PubMed  Google Scholar 

  13. Serpa Neto A, Juffermans NP, Hemmes SNT, et al. Interaction between peri-operative blood transfusion, tidal volume, airway pressure and postoperative ARDS: an individual patient data meta-analysis. Ann Transl Med. 2018;6(2):23.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shaver CM, Upchurch CP, Janz DR, et al. Cell-free hemoglobin: a novel mediator of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;310(6):L532–41.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lacroix J, Hebert PC, Hutchison JS, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356(16):1609–19.

    Article  CAS  PubMed  Google Scholar 

  16. Demaret P, Emeriaud G, Hassan NE, et al. Recommendations on RBC transfusions in critically ill children with acute respiratory failure from the pediatric critical care transfusion and anemia expertise initiative. Pediatr Crit Care Med. 2018;19(9S Suppl 1):S114–20.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Valentine SL, Nadkarni VM, Curley MA, Pediatric Acute Lung Injury Consensus Conference G. Nonpulmonary treatments for pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S73–85.

    Article  PubMed  Google Scholar 

  18. Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, Blumberg N, Spinella PC, Norris PJ, Dahmer MK, Muszynski JA, Pediatric Critical Care Blood Research Network (Blood Net). Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion. 2018;58(3):804–15. https://doi.org/10.1111/trf.14488. Epub 2018 Jan 30. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baek JH, D’Agnillo F, Vallelian F, et al. Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in Guinea pigs by haptoglobin therapy. J Clin Invest. 2012;122(4):1444–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buehler PW, Abraham B, Vallelian F, et al. Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification. Blood. 2009;113(11):2578–86.

    Article  CAS  PubMed  Google Scholar 

  21. Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol. 2014;5:415.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deuel JW, Vallelian F, Schaer CA, Puglia M, Buehler PW, Schaer DJ. Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity. Free Radic Biol Med. 2015;89:931–43.

    Article  CAS  PubMed  Google Scholar 

  23. Remy KE. Haptoglobin improves shock, lung injury, and survival in canine pneumonia. JCI Insight. 2018;3(18):123013.

    Article  PubMed  Google Scholar 

  24. Shaver CM, Wickersham N, McNeil JB, et al. Cell-free hemoglobin promotes primary graft dysfunction through oxidative lung endothelial injury. JCI Insight. 2018;3(2):98546.

    Article  PubMed  Google Scholar 

  25. Shaver CM, Wickersham N, McNeil JB, et al. Cell-free hemoglobin-mediated increases in vascular permeability. A novel mechanism of primary graft dysfunction and a new therapeutic target. Ann Am Thorac Soc. 2017;14(Supplement_3):S251–2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arruda MA, Graca-Souza AV, Barja-Fidalgo C. Heme and innate immunity: new insights for an old molecule. Mem Inst Oswaldo Cruz. 2005;100(7):799–803.

    Article  CAS  PubMed  Google Scholar 

  27. Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol. 2014;5:115.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baek JH, Zhang X, Williams MC, Schaer DJ, Buehler PW, D’Agnillo F. Extracellular Hb enhances cardiac toxicity in endotoxemic guinea pigs: protective role of haptoglobin. Toxins (Basel). 2014;6(4):1244–59.

    Article  Google Scholar 

  29. Donadee C, Raat NJ, Kanias T, et al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation. 2011;124(4):465–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fortes GB, Alves LS, de Oliveira R, et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012;119(10):2368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suffredini DA, Xu W, Sun J, et al. Parenteral irons versus transfused red blood cells for treatment of anemia during canine experimental bacterial pneumonia. Transfusion. 2017;57(10):2338–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilson CR, Kraus TS, Hod EA, et al. A novel mouse model of red blood cell storage and posttransfusion in vivo survival. Transfusion. 2009;49(8):1546–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hod EA, Spitalnik SL. Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfus Clin Biol. 2012;19(3):84–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hod EA, Zhang N, Sokol SA, et al. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood. 2010;115(21):4284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. L’Acqua C, Bandyopadhyay S, Francis RO, et al. Red blood cell transfusion is associated with increased hemolysis and an acute phase response in a subset of critically ill children. Am J Hematol. 2015;90(10):915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spitalnik SL. Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfusion. 2014;54(10):2365–71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cortes-Puch I, Remy KE, Solomon SB, et al. In a canine pneumonia model of exchange transfusion, altering the age but not the volume of older red blood cells markedly alters outcome. Transfusion. 2015;55(11):2564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muszynski JA, Spinella PC, Cholette JM, et al. Transfusion-related immunomodulation: review of the literature and implications for pediatric critical illness. Transfusion. 2017;57(1):195–206.

    Article  PubMed  Google Scholar 

  39. Figueiredo RT, Fernandez PL, Mourao-Sa DS, et al. Characterization of heme as activator of Toll-like receptor 4. J Biol Chem. 2007;282(28):20221–9.

    Article  CAS  PubMed  Google Scholar 

  40. Porto BN, Alves LS, Fernandez PL, et al. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J Biol Chem. 2007;282(33):24430–6.

    Article  CAS  PubMed  Google Scholar 

  41. Graca-Souza AV, Arruda MA, de Freitas MS, Barja-Fidalgo C, Oliveira PL. Neutrophil activation by heme: implications for inflammatory processes. Blood. 2002;99(11):4160–5.

    Article  CAS  PubMed  Google Scholar 

  42. Gilliss BM, Looney MR, Gropper MA. Reducing noninfectious risks of blood transfusion. Anesthesiology. 2011;115(3):635–49.

    Article  PubMed  Google Scholar 

  43. Looney MR, Gilliss BM, Matthay MA. Pathophysiology of transfusion-related acute lung injury. Curr Opin Hematol. 2010;17(5):418–23.

    Article  PubMed  Google Scholar 

  44. Skeate RC, Eastlund T. Distinguishing between transfusion related acute lung injury and transfusion associated circulatory overload. Curr Opin Hematol. 2007;14(6):682–7.

    Article  PubMed  Google Scholar 

  45. Weiskopf RB, Feiner J, Toy P, et al. Fresh and stored red blood cell transfusion equivalently induce subclinical pulmonary gas exchange deficit in normal humans. Anesth Analg. 2012;114(3):511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cherry T, Steciuk M, Reddy VV, Marques MB. Transfusion-related acute lung injury: past, present, and future. Am J Clin Pathol. 2008;129(2):287–97.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Remy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Remy, K.E., Mannion, D.A., Muszynski, J.A. (2020). Red Blood Cell Transfusion in Pediatric Acute Respiratory Distress Syndrome. In: Shein, S., Rotta, A. (eds) Pediatric Acute Respiratory Distress Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-21840-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21840-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21839-3

  • Online ISBN: 978-3-030-21840-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics