Skip to main content

Mechanisms of Vibration Detection in Mammals

  • Chapter
  • First Online:
Biotremology: Studying Vibrational Behavior

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 6))

Abstract

Ground-borne vibrations are known to be used for a range of different purposes among mammals, but the sensory mechanisms used in their detection often remain unclear. Potential somatosensory receptors for low-frequency seismic cues include Pacinian and Meissner’s corpuscles, while some species such as golden moles are believed to be adapted towards bone-conducted hearing. This chapter outlines the basic physiology underlying vibratory detection by these various means, and considers species in which particular mechanisms are likely to be prominent. Both the somatosensory and the auditory systems have been implicated in the vibratory sensitivity of elephants and spalacid mole rats, which are examined in detail as case studies. It may prove to be the case that interactions between these two modalities at a central level render any clear distinction impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian ED, Umrath K (1929) The impulse discharge from the Pacinian corpuscle. J Physiol 68:139–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bárány E (1938) A contribution to the physiology of bone conduction. Acta Otolaryngol Suppl 26:1–233

    Google Scholar 

  • Bell J, Bolanowski S, Holmes MH (1994) The structure and function of Pacinian corpuscles: a review. Prog Neurobiol 42:79–128

    CAS  PubMed  Google Scholar 

  • Bishop AM, Denton P, Pomeroy P, Twiss S (2015) Good vibrations by the beach boys: magnitude of substrate vibrations is a reliable indicator of male grey seal size. Anim Behav 100:74–82

    Google Scholar 

  • Bizley JK, Jones GP, Town SM (2016) Where are multisensory signals combined for perceptual decision-making? Curr Opin Neurobiol 40:31–37

    CAS  PubMed  Google Scholar 

  • Bojsen-Moller F, Flagstad KE (1976) Plantar aponeurosis and internal architecture of the ball of the foot. J Anat 121:599–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolanowski SJ, Pawson L (2003) Organization of Meissner corpuscles in the glabrous skin of monkey and cat. Somatosens Mot Res 20:223–231

    PubMed  Google Scholar 

  • Bolanowski SJ, Zwislocki JJ (1984) Intensity and frequency characteristics of Pacinian corpuscles. I. Action potentials. J Neurophysiol 51:793–811

    PubMed  Google Scholar 

  • Bolanowski SJ, Gescheider GA, Verrillo RT, Checkosky CM (1988) Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 84:1680–1694

    PubMed  Google Scholar 

  • Bouley DM, Alarcón CN, Hildebrandt T, O'Connell-Rodwell CE (2007) The distribution, density and three-dimensional histomorphology of Pacinian corpuscles in the foot of the Asian elephant (Elephas maximus) and their potential role in seismic communication. J Anat 211:428–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brantberg K, Falahat B, Kalthoff DC (2015) Do extant elephants have superior canal dehiscence syndrome? Acta Otolaryngol 135:1259–1263

    PubMed  Google Scholar 

  • Brenowitz GL (1980) Cutaneous mechanoreceptor distribution and its relationship to behavioral specializations in squirrels. Brain Behav Evol 17:432–453

    CAS  PubMed  Google Scholar 

  • Brisben AJ, Hsiao SS, Johnson KO (1999) Detection of vibration transmitted through an object grasped in the hand. J Neurophysiol 81:1548–1558

    CAS  PubMed  Google Scholar 

  • Brownell PH (1977) Compressional and surface waves in sand used by desert scorpions to locate prey. Science 197:479–482

    CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, Hess A, Scheich H (2006) Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems. Neuroscience 143:1065–1083

    CAS  PubMed  Google Scholar 

  • Buskirk RE, Frohlich C, Latham GV (1981) Unusual animal behavior before earthquakes: a review of possible sensory mechanisms. Rev Geophys Space Phys 19:247–270

    Google Scholar 

  • Caetano G, Jousmäki V (2006) Evidence of vibrotactile input to human auditory cortex. NeuroImage 29:15–28

    PubMed  Google Scholar 

  • Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20:89–108

    PubMed  Google Scholar 

  • Catania KC (1995) Structure and innervation of the sensory organs on the snout of the star-nosed mole. J Comp Neurol 351:536–548

    CAS  PubMed  Google Scholar 

  • Catania KC (1996) Ultrastructure of the Eimer’s organ of the star-nosed mole. J Comp Neurol 65:343–354

    Google Scholar 

  • Catania KC (2000) Epidermal sensory organs of moles, shrew-moles, and desmans: a study of the family Talpidae with comments on the function and evolution of Eimer’s organ. Brain Behav Evol 56:146–174

    CAS  PubMed  Google Scholar 

  • Catania KC, Kaas JH (1996) The unusual nose and brain of the star-nosed mole. Bioscience 46:578–586

    Google Scholar 

  • Catania KC, Kaas JH (1997) Somatosensory fovea in the star-nosed mole: behavioural use of the star in relation to innervation patterns and cortical representation. J Comp Neurol 387:215–233

    CAS  PubMed  Google Scholar 

  • Catania KC, Remple MS (2002) Somatosensory cortex dominated by the representation of teeth in the naked mole-rat brain. Proc Natl Acad Sci U S A 99:5692–5697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catania KC, Remple FE (2005) Asymptotic prey profitability drives star-nosed moles to the foraging speed limit. Nature 433:519–522

    CAS  PubMed  Google Scholar 

  • Cauna N (1956) Nerve supply and nerve endings in Meissner’s corpuscles. Am J Anat 99:315–350

    CAS  PubMed  Google Scholar 

  • Cauna N, Mannan G (1959) Development and postnatal changes of digital Pacinian corpuscles (corpuscula lamellosa) in the human hand. J Anat 93:271–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curthoys IS (2017) The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence. Exp Brain Res 235:957–972

    PubMed  Google Scholar 

  • Curthoys IS, Grant JW (2015) How does high-frequency sound or vibration activate vestibular receptors? Exp Brain Res 233:691–699

    CAS  PubMed  Google Scholar 

  • Curthoys IS, Vulovic V, Burgess AM, Sokolic L, Goonetilleke SC (2016) The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS). Hear Res 331:131–143

    PubMed  Google Scholar 

  • Dong WK, Shiwaku T, Kawakami Y, Chudler EH (1993) Static and dynamic responses of periodontal ligament mechanoreceptors and intradental mechanoreceptors. J Neurophysiol 69:1567–1582

    CAS  PubMed  Google Scholar 

  • Ekdale EG (2013) Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS One 8:e66624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fielden LJ, Hickman GC, Perrin MR (1992) Locomotory activity in the Namib Desert golden mole Eremitalpa granti namibensis (Chrysochloridae). J Zool 226:329–344

    Google Scholar 

  • Fleischer G (1973) Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Säugetierkundliche Mitteilungen 21:131–239

    Google Scholar 

  • García-Suárez O, Calavia MG, Pérez-Moltó FJ, Alvarez-Abad C, Pérez-Piñera P, Cobo JM, Vega J (2010) Immunohistochemical profile of human pancreatic Pacinian corpuscles. Pancreas 39:403–410

    PubMed  Google Scholar 

  • Garstang M, Davis RE, Leggett K, Frauenfeld OW, Greco S, Zipser E, Peterson M (2014) Response of African elephants (Loxodonta africana) to seasonal changes in rainfall. PLoS One 9:e108736

    PubMed  PubMed Central  Google Scholar 

  • Gasc JP, Jouffroy FK, Renous S, von Blottnitz F (1986) Morphofunctional study of the digging system of the Namib Desert golden mole (Eremitalpa granti namibensis): cinefluorographical and anatomical analysis. J Zool 208:9–35

    Google Scholar 

  • Giannoni SM, Márquez R, Borghi CE (1997) Airborne and substrate-borne communications of Microtus (Terricola) gerbei and M. (T.) duodecimcostatus. Acta Theriol 42:123–141

    Google Scholar 

  • Gray AA (1906) Observations on the labyrinth of certain animals. Proc R Soc Lond B 78:284–296

    Google Scholar 

  • Gray AA (1908) The labyrinth of animals, vol II. J. & A. Churchill, London

    Google Scholar 

  • Gray JAB, Matthews PBC (1951) Response of Pacinian corpuscles in the cat’s toe. J Physiol 113:475–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory JE, McIntyre AK, Proske U (1986) Vibration-evoked responses from lamellated corpuscles in the legs of kangaroos. Exp Brain Res 62:648–653

    CAS  PubMed  Google Scholar 

  • Guignard JC (1971) Human sensitivity to vibration. J Sound Vib 15:11–16

    Google Scholar 

  • Håkansson B, Brandt A, Carlsson P, Tjellström A (1994) Resonance frequencies of the human skull in vivo. J Acoust Soc Am 95:1474–1481

    PubMed  Google Scholar 

  • Heffner RS, Heffner HE (1980) Hearing in the elephant (Elephas maximus). Science 208:518–520

    CAS  PubMed  Google Scholar 

  • Heffner RS, Heffner HE (1982) Hearing in the elephant (Elephas maximus): absolute sensitivity, frequency discrimination, and sound localization. J Comp Physiol Psych 96:926–944

    CAS  Google Scholar 

  • Heffner RS, Heffner HE (1992) Hearing and sound localization in blind mole rats (Spalax ehrenbergi). Hear Res 62:206–216

    CAS  PubMed  Google Scholar 

  • Heth G (1989) Burrow patterns of the mole rat Spalax ehrenbergi in two soil types (terra-rossa and rendzina) in Mount Carmel, Israel. J Zool 217:39–56

    Google Scholar 

  • Heth G, Frankenberg E, Raz A, Nevo E (1987) Vibrational communication in subterranean mole rats (Spalax ehrenbergi). Behav Ecol Sociobiol 21:31–33

    Google Scholar 

  • Heth G, Frankenberg E, Pratt H, Nevo E (1991) Seismic communication in the blind subterranean mole-rat: patterns of head thumping and of their detection in the Spalax ehrenbergi superspecies in Israel. J Zool 224:633–638

    Google Scholar 

  • Hoffmann JN, Montag AG, Dominy NJ (2004) Meissner corpuscles and somatosensory acuity: the prehensile appendages of primates and elephants. Anat Record A 281:1138–1147

    Google Scholar 

  • Homma K, Du Y, Shimizu Y, Puria S (2009) Ossicular resonance modes of the human middle ear for bone and air conduction. J Acoust Soc Am 125:968–979

    PubMed  PubMed Central  Google Scholar 

  • Hrouzková E, Dvořáková V, Jedlička P, Šumbera R (2013) Seismic communication in demon African mole rat Tachyoryctes daemon from Tanzania. J Ethol 31:255–259

    Google Scholar 

  • Hunt CC (1961) On the nature of vibration receptors in the hind limb of the cat. J Physiol 155:175–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyrtl J (1845) Vergleichend-anatomische Untersuchungen über das innere Gehörorgan des Menschen und der Säugethiere. Verlag von Friedrich Ehrlich, Prague

    Google Scholar 

  • Iggo A, Andres KH (1982) Morphology of cutaneous receptors. Annu Rev Neurosci 5:1–31

    CAS  PubMed  Google Scholar 

  • Jahss MH, Michelson JD, Desai P, Kaye R, Kummer F, Buschman W, Watkins F, Reich S (1992) Investigations into the fat pads of the sole of the foot: anatomy and histology. Foot Ankle 13:233–242

    CAS  PubMed  Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    CAS  PubMed  Google Scholar 

  • Kato K, Tahara H, Oda T (1994) Pacinian corpuscles in the digits of the house musk shrew (Suncus murinus). Bulletin of the School of Allied Medical Sciences, Nagasaki University 7:21–27

    Google Scholar 

  • Ketten DR, Arruda J, Cramer S, Yamato M (2016) Great ears: low-frequency sensitivity correlates in land and marine leviathans. Adv Exp Med Biol 875:529–538

    CAS  PubMed  Google Scholar 

  • Kimchi T, Terkel J (2003a) Detours by the blind mole-rat follow assessment of location and physical properties of underground obstacles. Anim Behav 66:885–891

    Google Scholar 

  • Kimchi T, Terkel J (2003b) Mole rats (Spalax ehrenbergi) select bypass burrowing strategies in accordance with obstacle size. Naturwissenschaften 90:36–39

    CAS  PubMed  Google Scholar 

  • Kimchi T, Reshef M, Terkel J (2005) Evidence for the use of reflected self-generated seismic waves for spatial orientation in a blind subterranean mammal. J Exp Biol 208:647–659

    PubMed  Google Scholar 

  • Kirschvink JL (2000) Earthquake prediction by animals: evolution and sensory perception. B Seismo Soc Am 90:312–323

    Google Scholar 

  • Klauer G, Burda H, Nevo E (1997) Adaptive differentiations of the skin of the head in a subterranean rodent, Spalax ehrenbergi. J Morphol 2(33):53–66

    Google Scholar 

  • Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172

    CAS  PubMed  Google Scholar 

  • Kumamoto K, Senuma H, Ebara S, Matsuura T (1993a) Distribution of Pacinian corpuscles in the hand of the monkey, Macaca fuscata. J Anat 183:149–154

    PubMed  PubMed Central  Google Scholar 

  • Kumamoto K, Takei M, Kinoshita M, Ebara S, Matsuura T (1993b) Distribution of Pacinian corpuscles in the cat forefoot. J Anat 182:23–28

    PubMed  PubMed Central  Google Scholar 

  • Lewis ER (1984) Inertial motion sensors. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, Cambridge, pp 587–610

    Google Scholar 

  • Lewis ER, Narins PM (1985) Do frogs communicate with seismic signals? Science 227:187–189

    CAS  PubMed  Google Scholar 

  • Lewis ER, Narins PM, Jarvis JUM, Bronner G, Mason MJ (2006) Preliminary evidence for the use of microseismic cues for navigation by the Namib golden mole. J Acoust Soc Am 119:1260–1268

    PubMed  Google Scholar 

  • Li J-G, Wang T-Z, He J-P, Min Y-J (2001) Seismic communication in subterranean Gansu zokor (Myospalax cansus). Acta Theriol Sinica 21:153–154

    CAS  Google Scholar 

  • Loewenstein WR, Skalak R (1966) Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. J Physiol 182:346–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard RE, Hetherington TE (1993) Structural basis of hearing and sound transmission. In: Hanken J, Hall BK (eds) The skull, vol 3. The University of Chicago Press, Chicago, pp 241–302

    Google Scholar 

  • Loo SK, Halata Z (1985) The sensory innervation of the nasal glabrous skin in the short-nosed bandicoot (Isoodon macrourus) and the opossum (Didelphis virginiana). J Anat 143:167–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahns DA, Perkins NM, Sahai V, Robinson L, Rowe MJ (2006) Vibrotactile frequency discrimination in human hairy skin. J Neurophysiol 95:1442–1450

    CAS  PubMed  Google Scholar 

  • Marasco PD, Catania KC (2007) Response properties of primary afferents supplying Eimer’s organ. J Exp Biol 210:765–780

    PubMed  Google Scholar 

  • Mason MJ (2001) Middle ear structures in fossorial mammals: a comparison with non-fossorial species. J Zool 255:467–486

    Google Scholar 

  • Mason MJ (2003a) Bone conduction and seismic sensitivity in golden moles (Chrysochloridae). J Zool 260:405–413

    Google Scholar 

  • Mason MJ (2003b) Morphology of the middle ear of golden moles (Chrysochloridae). J Zool 260:391–403

    Google Scholar 

  • Mason MJ (2006) Evolution of the middle ear apparatus in talpid moles. J Morphol 267:678–695

    PubMed  Google Scholar 

  • Mason MJ, Farr MRB (2013) Flexibility within the middle ears of vertebrates. J Laryngol Otol 127:2–14

    CAS  PubMed  Google Scholar 

  • Mason MJ, Narins PM (2001) Seismic signal use by fossorial mammals. Am Zool 41:1171–1184

    Google Scholar 

  • Mason MJ, Narins PM (2010) Seismic sensitivity and communication in subterranean mammals. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Research Signpost, Kerala, pp 121–139

    Google Scholar 

  • Mason MJ, Lucas SJ, Wise ER, Stein RS, Duer MJ (2006) Ossicular density in golden moles (Chrysochloridae). J Comp Physiol A 192:1349–1357

    Google Scholar 

  • Mason MJ, Lai FWS, Li J-G, Nevo E (2010) Middle ear structure and bone conduction in Spalax, Eospalax and Tachyoryctes mole-rats (Rodentia: Spalacidae). J Morphol 271:462–472

    PubMed  Google Scholar 

  • Mason MJ, Bennett NC, Pickford M (2018) The middle and inner ears of the Palaeogene golden mole Namachloris: a comparison with extant species. J Morphol 279:375–395

    PubMed  Google Scholar 

  • McIntyre AK (1962) Cortical projection of impulses in the interosseous nerve of the cat’s hind limb. J Physiol 163:46–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merzenich MM, Harrington T (1969) The sense of flutter-vibration evoked by stimulation of the hairy skin of primates: comparison of human sensory capacity with the responses of mechanoreceptive afferents innervating the hairy skin of monkeys. Exp Brain Res 9:236–260

    CAS  PubMed  Google Scholar 

  • Moller H, Pedersen CS (2004) Hearing at low and infrasonic frequencies. Noise Health 6:37–57

    CAS  PubMed  Google Scholar 

  • Mountcastle VB, Steinmetz MA, Romo R (1990) Frequency discrimination in the sense of flutter: psychophysical measurements correlated with postcentral events in behaving monkeys. J Neurosci 10:3032–3044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munger BL, Ide C (1988) The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51:1–34

    CAS  PubMed  Google Scholar 

  • Narins PM, Lewis ER (1984) The vertebrate ear as an exquisite seismic sensor. J Acoust Soc Am 76:1384–1387

    CAS  PubMed  Google Scholar 

  • Narins PM, Reichman OJ, Jarvis JUM, Lewis ER (1992) Seismic signal transmission between burrows of the Cape mole-rat, Georychus capensis. J Comp Physiol A 170:13–21

    CAS  PubMed  Google Scholar 

  • Narins PM, Lewis ER, Jarvis JUM, O’Riain J (1997) The use of seismic signals by fossorial southern African mammals: a neuroethological gold mine. Brain Res Bull 44:641–646

    CAS  PubMed  Google Scholar 

  • Narins PM, Stoeger AS, O’Connell-Rodwell C (2016) Infrasound and seismic communication in the vertebrates with special emphasis on the Afrotheria: an update and future directions. In: Suthers RA, Fitch WT, Fay RR, Popper AN (eds) Vertebrate sound production and acoustic communication. Springer, Heidelberg, pp 191–227

    Google Scholar 

  • Nevo E, Heth G, Pratt H (1991) Seismic communication in a blind subterranean mammal: A major somatosensory mechanism in adaptive evolution underground. Proc Natl Acad Sci U S A 88:1256–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nummela S (1995) Scaling of the mammalian middle ear. Hear Res 85:18–30

    CAS  PubMed  Google Scholar 

  • O’Connell C, Hart LA, Arnason BT (1999) Comments on “Elephant hearing” [J Acoust Soc Am 104:1122–1123 (1998)]. J Acoust Soc Am 105:2051–2052

    PubMed  Google Scholar 

  • O’Connell-Rodwell CE (2007) Keeping an “ear” to the ground: seismic communication in elephants. Physiology (Bethesda) 22:287–294

    Google Scholar 

  • O’Connell-Rodwell CE, Arnason BT, Hart LA (2000) Seismic properties of Asian elephant (Elephas maximus) vocalizations and locomotion. J Acoust Soc Am 108:3066–3072

    PubMed  Google Scholar 

  • O’Connell-Rodwell CE, Hart LA, Arnason BT (2001) Exploring the potential use of seismic waves as a communication channel by elephants and other large mammals. Am Zool 41:1157–1170

    Google Scholar 

  • O’Connell-Rodwell CE, Wood JD, Rodwell TC, Puria S, Partan SR, Keefe R, Shriver D, Arnason BT, Hart LA (2006) Wild elephant (Loxodonta africana) breeding herds respond to artificially transmitted seismic stimuli. Behav Ecol Sociobiol 59:842–850

    Google Scholar 

  • O’Connell-Rodwell CE, Wood JD, Kinzley C, Rodwell TC, Poole JH, Puria S (2007) Wild African elephants (Loxodonta africana) discriminate between familiar and unfamiliar conspecific seismic alarm calls. J Acoust Soc Am 122:823–830

    PubMed  Google Scholar 

  • Pawson L, Checkosky CM, Pack AK, Bolanowski SJ (2008) Mesenteric and tactile Pacinian corpuscles are anatomically and physiologically comparable. Somatosens Mot Res 25:194–206

    PubMed  Google Scholar 

  • Phillips JR, Johansson RS, Johnson KO (1990) Representation of braille characters in human nerve fibres. Exp Brain Res 81:589–592

    CAS  PubMed  Google Scholar 

  • Proske U (2006) Kinesthesia: the role of muscle receptors. Muscle Nerve 34:545–558

    CAS  PubMed  Google Scholar 

  • Proske U, Gregory JE, Iggo A (1998) Sensory receptors in monotremes. Philos T R Soc Lond B 353:1187–1198

    CAS  Google Scholar 

  • Quindlen JC, Lai VK, Barocas VH (2015) Multiscale mechanical model of the Pacinian corpuscle shows depth and anisotropy contribute to the receptor’s characteristic response to indentation. PLoS Comput Biol 11:e1004370

    PubMed  PubMed Central  Google Scholar 

  • Quindlen JC, Stolarski HK, Johnson MD, Barocas VH (2016) A multiphysics model of the Pacinian corpuscle. Integr Biol 8:1111–1125

    CAS  Google Scholar 

  • Rado R, Levi N, Hauser H, Witcher J, Alder N, Intrator N, Wollberg Z, Terkel J (1987) Seismic signalling as a means of communication in a subterranean mammal. Anim Behav 35:1249–1251

    Google Scholar 

  • Rado R, Himelfarb M, Arensburg B, Terkel J, Wolberg Z (1989) Are seismic communication signals transmitted by bone conduction in the blind mole rat? Hear Res 41:23–30

    CAS  PubMed  Google Scholar 

  • Rado R, Terkel J, Wollberg Z (1998) Seismic communication signals in the blind mole-rat (Spalax ehrenbergi): electrophysiological and behavioral evidence for their processing by the auditory system. J Comp Physiol A 183:503–511

    CAS  PubMed  Google Scholar 

  • Randall JA (2010) Drummers and stompers: vibrational communication in mammals. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Research Signpost, Kerala, pp 99–120

    Google Scholar 

  • Randall JA, Lewis ER (1997) Seismic communication between burrows of kangaroo rats, Dipodomys spectabilis. J Comp Physiol A 181:525–531

    CAS  PubMed  Google Scholar 

  • Randall JA, Matocq MD (1997) Why do kangaroo rats (Dipodomys spectabilis) footdrum at snakes? Behav Ecol 8:404–413

    Google Scholar 

  • Rasmussen LEL, Munger BL (1996) The sensorineural specializations of the trunk tip (finger) of the Asian elephant, Elephas maximus. Anat Rec 246:127–134

    CAS  PubMed  Google Scholar 

  • Reinfeldt S, Håkansson B, Taghavi H, Eeg-Olofsson M (2015) New developments in bone-conduction hearing implants: a review. Med Devices (Auckland, NZ) 8:79–93

    Google Scholar 

  • Reuter T, Nummela S, Hemilä S (1998) Elephant hearing. J Acoust Soc Am 104:1122–1123

    CAS  PubMed  Google Scholar 

  • Rice FL, Munger BL (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. II. The common fur between the vibrissae. J Comp Neurol 252:186–205

    CAS  PubMed  Google Scholar 

  • Rice FL, Rasmusson DD (2000) Innervation of the digit on the forepaw of the raccoon. J Comp Neurol 417:467–490

    CAS  PubMed  Google Scholar 

  • Rice FL, Mance A, Munger BL (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol 252:154–174

    CAS  PubMed  Google Scholar 

  • Ro T, Hsu J, Yasar NE, Elmore LC, Beauchamp MS (2009) Sound enhances touch perception. Exp Brain Res 195:135–143

    PubMed  Google Scholar 

  • Roberts WH (1959) Lamellated corpuscles (Pacinian) in relation to the larger human limb vessels and a comparative study of their distribution in the mesentery. Anat Rec 133:593–603

    Google Scholar 

  • Robertson LT, Levy JH, Petrisor D, Lilly DJ, Dong WK (2003) Vibration perception thresholds of human maxillary and mandibular central incisors. Arch Oral Biol 48:309–316

    PubMed  Google Scholar 

  • Roset-Llobet J, Domenech-Mateu JM (1991) Uncommon number and distribution of the Pacinian corpuscles in a human hand. J Hand Surg 16:89–91

    CAS  Google Scholar 

  • Rowe MJ, Tracey DJ, Mahns DA, Sahai V, Ivanusic JJ (2005) Mechanosensory perception: are there contributions from bone-associated receptors? Clin Exp Pharmacol P 32:100–108

    CAS  Google Scholar 

  • Roy C, Lagarde J, Dotov D, Dalla Bella S (2017) Walking to a multisensory beat. Brain Cogn 113:172–183

    PubMed  Google Scholar 

  • Sanyal S, Jansen HG, de Grip WJ, Nevo E, de Jong WW (1990) The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? Invest Ophthalmol Vis Sci 31:1398–1404

    CAS  PubMed  Google Scholar 

  • Sato M (1961) Response of Pacinian corpuscles to sinusoidal vibration. J Physiol 159:391–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan D (1933) The clinical significance of the nerve-endings in the mesentery. Lancet 221:409–413

    Google Scholar 

  • Shehata R (1972) Pacinian corpuscles in pelvic urogenital organs and outside abdominal lymph glands of the cat. Acta Anat 83:127–138

    CAS  PubMed  Google Scholar 

  • Shipley C, Stewart BS, Bass J (1992) Seismic communication in northern elephant seals. In: Thomas JA, Kastelein RA, Supin AY (eds) Marine mammal sensory systems. Plenum, New York, pp 553–562

    Google Scholar 

  • Silverman RT, Munger BL, Halata Z (1986) The sensory innervation of the rat rhinarium. Anat Rec 214:210–225

    CAS  PubMed  Google Scholar 

  • Šklíba J, Šumbera R, Chitaukali WN (2008) Reactions to disturbances in the context of antipredatory behaviour in a solitary subterranean rodent. J Ethol 26:249–254

    Google Scholar 

  • Stark B, Carlstedt T, Hallin RG, Risling M (1998) Distribution of human Pacinian corpuscles in the hand. A cadaver study. J Hand Surg 23:370–372

    CAS  Google Scholar 

  • Stenfelt S (2006) Middle ear ossicles motion at hearing thresholds with air conduction and bone conduction stimulation. J Acoust Soc Am 119:2848–2858

    PubMed  Google Scholar 

  • Stenfelt S, Goode RL (2005) Bone-conducted sound: physiological and clinical aspects. Otol Neurotol 26:1245–1261

    PubMed  Google Scholar 

  • Stenfelt S, Wild T, Hato N, Goode RL (2003) Factors contributing to bone conduction: the outer ear. J Acoust Soc Am 113:902–913

    PubMed  Google Scholar 

  • Stroganov SU (1945) Morphological characters of the auditory ossicles of recent Talpidae. J Mammal 26:412–420

    CAS  PubMed  Google Scholar 

  • Takahashi Y (2011) A study on the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise. Noise Health 13:2–8

    PubMed  Google Scholar 

  • Takahashi-Iwanaga H, Shimoda H (2003) The three-dimensional microanatomy of Meissner corpuscles in monkey palmar skin. J Neurocytol 32:363–371

    PubMed  Google Scholar 

  • Talbot WH, Darian-Smith I, Kornhuber HH, Mountcastle VB (1968) The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31:301–334

    CAS  PubMed  Google Scholar 

  • Tonndorf J (1972) Bone conduction. In: Tobias JV (ed) Foundations of modern auditory theory, vol 2. Academic, London, pp 197–237

    Google Scholar 

  • Tonndorf J, Greenfield EC, Kaufman RS (1966) Bone conduction studies in experimental animals. V. The occlusion of the external ear canal: its effect upon bone conduction in cats. Acta Otolaryngol Suppl 213:80–104

    Google Scholar 

  • Trulsson M, Francis ST, Bowtell R, McGlone F (2010) Brain activations in response to vibrotactile tooth stimulation: a psychophysical and fMRI study. J Neurophysiol 104:2257–2265

    PubMed  Google Scholar 

  • Tuttle RS, McCleary M (1975) Mesenteric baroreceptors. Am J Phys 229:1514–1519

    CAS  Google Scholar 

  • Verendeev A, Thomas C, McFarlin SC, Hopkins WD, Phillips KA, Sherwood CC (2015) Comparative analysis of Meissner’s corpuscles in the fingertips of primates. J Anat 227:72–80

    PubMed  PubMed Central  Google Scholar 

  • Vigne GT (1832) Six months in America, vol 2. Whittaker, Treacher, & Co., London

    Google Scholar 

  • von Gierke HE, Parker DE (1994) Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviat Space Environ Med 65:747–751

    Google Scholar 

  • Weissengruber GE, Egger GF, Hutchinson JR, Groenewald HB, Elsässer L, Famini D, Forstenpointner G (2006) The structure of the cushions in the feet of African elephants (Loxodonta africana). J Anat 209:781–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wikramanayake E, Fernando P, Leimgruber P (2006) Behavioral response of satellite-collared elephants to the tsunami in Southern Sri Lanka. Biotropica 38:775–777

    Google Scholar 

  • Willi UB, Bronner GN, Narins PM (2006a) Middle ear dynamics in response to seismic stimuli in the Cape golden mole (Chrysochloris asiatica). J Exp Biol 209:302–313

    CAS  PubMed  Google Scholar 

  • Willi UB, Bronner GN, Narins PM (2006b) Ossicular differentiation of airborne and seismic stimuli in the Cape golden mole (Chrysochloris asiatica). J Comp Physiol A 192:267–277

    CAS  Google Scholar 

  • Wilson EC, Reed CM, Braida LD (2010) Integration of auditory and vibrotactile stimuli: effects of frequency. J Acoust Soc Am 127:3044–3059

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mason, M.J., Wenger, L.M.D. (2019). Mechanisms of Vibration Detection in Mammals. In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Studying Vibrational Behavior . Animal Signals and Communication, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_10

Download citation

Publish with us

Policies and ethics