Skip to main content

Sparsification Scale-Spaces

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

We introduce a novel scale-space concept that is inspired by inpainting-based lossy image compression and the recent denoising by inpainting method of Adam et al. (2017). In the discrete setting, the main idea behind these so-called sparsification scale-spaces is as follows: Starting with the original image, one subsequently removes a pixel until a single pixel is left. In each removal step the missing data are interpolated with an inpainting method based on a partial differential equation. We demonstrate that under fairly mild assumptions on the inpainting operator this general concept indeed satisfies crucial scale-space properties such as gradual image simplification, a discrete semigroup property or invariances. Moreover, our experiments show that it can be tailored towards specific needs by selecting the inpainting operator and the pixel sparsification strategy in an appropriate way. This may lead either to uncommitted scale-spaces or to highly committed, image-adapted ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, R.D., Peter, P., Weickert, J.: Denoising by inpainting. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 121–132. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_10

    Chapter  Google Scholar 

  2. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations in image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993)

    Article  Google Scholar 

  3. Andreu-Vaillo, F., Caselles, V., Mazon, J.M.: Parabolic Quasilinaer Equations Minimizing Linear Growth Functionals, Progress in Mathematics, vol. 223. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  4. Chambolle, A., Lucier, B.L.: Interpreting translationally-invariant wavelet shrinkage as a new image smoothing scale space. IEEE Trans. Image Process. 10(7), 993–1000 (2001)

    Article  MathSciNet  Google Scholar 

  5. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO Anal. Numérique 10, 5–12 (1976)

    MathSciNet  Google Scholar 

  6. Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 20, 267–298 (2004)

    Article  MathSciNet  Google Scholar 

  7. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31(2–3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hummel, R.A.: Representations based on zero-crossings in scale space. In: Proceedings of 1986 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 204–209. IEEE Computer Society Press, Miami Beach, June 1986

    Google Scholar 

  9. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotechnical Lab. 26, 368–388 (1962). in Japanese

    Google Scholar 

  10. Iijima, T.: Basic equation of figure and observational transformation. Syst. Comput. Controls 2(4), 70–77 (1971). in English

    Google Scholar 

  11. Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_3

    Chapter  Google Scholar 

  12. Melnikov, Y.A., Melnikov, M.Y.: Green’s Functions: Construction and Applications. De Gruyter, Berlin (2012)

    Book  Google Scholar 

  13. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer, New York (1992)

    Google Scholar 

  14. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  15. Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: Evaluating the true potential of diffusion-based inpainting in a compression context. Signal Process. Image Commun. 46, 40–53 (2016)

    Article  Google Scholar 

  16. Peter, P., Weickert, J., Munk, A., Krivobokova, T., Li, H.: Justifying tensor-driven diffusion from structure-adaptive statistics of natural images. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 263–277. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14612-6_20

    Chapter  Google Scholar 

  17. Radmoser, E., Scherzer, O., Weickert, J.: Scale-space properties of nonstationary iterative regularization methods. J. Visual Commun. Image Represent. 11(2), 96–114 (2000)

    Article  Google Scholar 

  18. Roussos, A., Maragos, P.: Tensor-based image diffusions derived from generalizations of the total variation and Beltrami functionals. In: Proceedings of 17th IEEE International Conference on Image Processing, Hong Kong, pp. 4141–4144, September 2010

    Google Scholar 

  19. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. J. Math. Imaging Vis. 12(1), 43–63 (2000)

    Article  MathSciNet  Google Scholar 

  20. Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Understanding, optimising, and extending data compression with anisotropic diffusion. Int. J. Comput. Vis. 108(3), 222–240 (2014)

    Article  MathSciNet  Google Scholar 

  21. Schmidt, M., Weickert, J.: Morphological counterparts of linear shift-invariant scale-spaces. J. Math. Imaging Vis. 56(2), 352–366 (2016)

    Article  MathSciNet  Google Scholar 

  22. Schönlieb, C.B.: Partial Differential Equation Methods for Image Inpainting. Cambridge University Press, New York (2015)

    Book  Google Scholar 

  23. Taubman, D.S., Marcellin, M.W. (eds.): JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer, Boston (2002)

    Google Scholar 

  24. Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–516 (2005)

    Article  Google Scholar 

  25. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  26. Weickert, J., Steidl, G., Mrázek, P., Welk, M., Brox, T.: Diffusion filters and wavelets: what can they learn from each other? In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 3–16. Springer, New York (2006). https://doi.org/10.1007/0-387-28831-7_1

    Chapter  MATH  Google Scholar 

  27. Welk, M., Weickert, J., Gilboa, G.: A discrete theory and efficient algorithms for forward-and-backward diffusion filtering. J. Math. Imaging Vis. 60(9), 1399–1426 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 741215, ERC Advanced Grant INCOVID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Cárdenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cárdenas, M., Peter, P., Weickert, J. (2019). Sparsification Scale-Spaces. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics