Skip to main content

Bifurcations in a Mathematical Model for Study of the Human Population and Natural Resource Exploitation

  • Chapter
  • First Online:
Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics

Abstract

In Colombia, there are reports of regions which have reached minimum natural resource thresholds. Among of the main causes thereof is the absence of institutional control actions. This absence is reflected in high rates of deforestation, water pollution, famine, and poverty, to name a few. For example, in La Guajira, a region where emeralds, coal, and petroleum are extracted, these activities have generated water pollution, which diminishes fishing activity, and which causes landslides, and the eviction and displacement of communities, who leave their land and agriculture practices behind (CINEP Programa por la paz, Informe especial: Minería, conflictos agrarios y ambientales en el sur de la Guajira (in Spanish) (2016), http://www.cinep.org.co/imagesinstitucionalinformes_especialesInforme_Especial-Mineria_La_Guajira.pdf). El Departamento Administrativo de Estadstica (DANE) revealed that, for 2014, said region exhibited a reduction in agricultural production, livestock farming, hunting, forestry, and fishing, of up to −5.2%, and little mining or quarrying growth (a scant 1.5%) (ICER, Informe de conyuntura económica regional. Departamento de la Guajira (in Spanish) (2015), https://www.dane.gov.co/files/icer/2015/ICER_La_Guajira2015.pdf). In this investigation, a mathematical model is presented, which makes the study of the dynamics of the following variables possible: human population, forest stock, fish stock, available water, and the human features necessary to achieve equilibrium values between socioeconomic and environmental issues. A bifurcation analysis is presented for different system parameters, i.e. technology and the percentage of the population dedicated to each economic sector. Special attention was paid to water consumption, energy production, and food production, owing to their everyday consumption relevance and necessitude. “If the human population increases, its consumption will also increase” (Garcia and You, Comput Chem Eng 91:49–67, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FAO, The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture (Food and Agriculture Organization of the United Nations, Roma, 2014), http://www.fao.org/3/a-bl496e.pdf

    Google Scholar 

  2. D.L. Keairns, M. El-Halwagi, K.M. Ng, Editorial overview: process systems engineering: a chemical engineering perspective of the food energy water nexus. Curr. Opin. Chem. Eng. 18, iii–iv (2017)

    Article  Google Scholar 

  3. C. Zhang, X. Chen, Y. Li, W. Ding, G. Fu, Water-energy-food nexus: concepts, questions and methodologies. J. Clean. Prod. 195, 625–639 (2018)

    Article  Google Scholar 

  4. D. Garcia, F. You, Systems engineering opportunities for agricultural and organic waste management in the food-water-energy nexus. Curr. Opin. Chem. Eng. 18, 23–31 (2017)

    Article  Google Scholar 

  5. L.G. Carmona, K. Whiting, A. Carrasco, The water footprint of heavy oil extraction in Colombia: a case study. Water 9, 340 (2017)

    Article  Google Scholar 

  6. D.J. Garcia, F. You, The water-energy-food nexus and process systems engineering: a new focus. Comput. Chem. Eng. 91, 49–67 (2016)

    Article  Google Scholar 

  7. IPCC, Technical summary, in Climate Change 2007: The Physical Science Basis, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  8. N. Mancosu, R. Snyder, G. Kyriakakis, D. Spano, Water scarcity and future challenges for food production. Water 7, 975–992 (2015)

    Article  Google Scholar 

  9. W.J.M. Martens, R. Slooff, E.K. Jackson, Climate change, human health, and sustainable development. WHO Bull. OMS 75, 583–588 (1997)

    Google Scholar 

  10. INVEMAR, Informe del estado de los ambientes y recursos marinos y costeros en Colombia: Año 2011. Serie de Publicaciones Periódicas No. 8. Santa Marta (2012), p. 203, http://www.invemar.org.co/redcostera1/invemar/docs/IER_2011.pdf

  11. PNUD, Objetivos de Desarrollo Sostenible, Colombia: Herramientas de aproximación al contexto local (2016), http://www.co.undp.org/content/dam/colombia/docs/ODM/undp-co-ODSColombiaVSWS-2016.pdf

    Google Scholar 

  12. J. Bonet-morón, L.W. Hahn-de-castro, La mortalidad y desnutrición infantil en La Guajira. Banco de la República 52(255), 1–49 (2017), http://www.banrep.gov.co/docum/Lectura_finanzas/pdf/dtser_255.pdf

    Google Scholar 

  13. C. Doria Argumedo, L.J. Vivas Aguas, Fuentes terrestres de contaminacin en la zona costera de La Guajira, Colombia. Rev. Investig. Agrar. Ambient. 7, 123–138 (2016)

    Article  Google Scholar 

  14. A. Londoño, Seminario Taller Buenas Prácticas Agrícolas. Unión Temporal Universidad Tecnológica de Pereira Comité de Cafeteros de Risaralda (Convenio -Ministerio de Comercio Industria y turismo - Fomipyme y Gobernacin de Risaralda, Risaralda, 2006)

    Google Scholar 

  15. J. Romero, Calidad del Agua. Escuela Colombiana de Ingeniería. ISBN: 958-8060-53-2. Bogotá (2005)

    Google Scholar 

  16. FAO, WWC. Towards a Water and Food Secure Future: Critical Perspectives for Policy-Makers (Natural Resources and Environment Department, 2015), http://www.fao.org/3/a-i4560e.pdf

    Google Scholar 

  17. V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei 5, 113 (1926)

    MATH  Google Scholar 

  18. A.J. Lotka, Elements of Mathematical Biology (Dover, New York, 1956)

    MATH  Google Scholar 

  19. J.A. Brander, M.S. Taylor, The simple economics of Easter Island: a ricardo-malthus model of renewable resource use. Am. Econ. Rev. 88, 119–138 (1998)

    Google Scholar 

  20. P. Yongzhen, L. Yunfei, Y. Rong, A prey-predator model with harvesting for fishery resource with reserve area. Appl. Math. Model. 37, 3048–3062 (2013)

    Article  MathSciNet  Google Scholar 

  21. T.J. Quinn II, Rumminations on the development and future of population dynamics models in fisheries. Nat. Resour. Model. 16, 341–392 (2003)

    Article  Google Scholar 

  22. H. Matsuda, T.K. Kar, A bioeconomic model of a single species fishery with a marine reserve. J. Environ. Manag. 86, 171–180 (2008)

    Article  Google Scholar 

  23. T.K. Kar, K. Chakraborty, Economic perspective of marine reserves in fisheries: a bioeconomic model. Math. Biosci. 240, 212–222 (2012)

    Article  MathSciNet  Google Scholar 

  24. S. D’Alessandro, Non-linear dynamics of population and natural resources: the emergence of different patterns of development. Ecol. Econ. 62, 473–481 (2007)

    Article  Google Scholar 

  25. J.B. Shukla, K. Lata, A.K. Misra, Modeling the depletion of a renewable resource by population and industrialization: effect of technology on its conservation. Nat. Resour. Model. 24, 242–267 (2011)

    Article  MathSciNet  Google Scholar 

  26. A.K. Misra, K. Lata, J.B. Shukla, Effects of population and population pressure on forest resources and their conservation: a modeling study. Environ. Dev. Sustain. 16, 361–374 (2014)

    Article  Google Scholar 

  27. A.K. Misra, K. Lata, A mathematical model to achieve sustainable forest management. Int. J. Model. Simul. Sci. Comput. 6, 1550040 (2015)

    Article  Google Scholar 

  28. C.A. Klausmeier, Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)

    Article  Google Scholar 

  29. J.A. Sherrat, An analysis of vegetation stripe formation in semi-arid landscapes. J. Math. Biol. 51, 183 (2005)

    Article  MathSciNet  Google Scholar 

  30. Organizacin de las Naciones Unidas para la Alimentacin y la Agricultura. Los bosques y el agua, http://www.fao.org/sustainable-forest-management/toolbox/modules/forest-and-waterbasic-knowledgees

  31. R. González-Bravo, M. Sauceda-Valenzuela, J. Mahlknecht, E. Rubio-Castro, J.M. Ponce-Ortega. Optimization of water grid at macroscopic level analyzing water-energy-food nexus. ACS Sustain. Chem. Eng. 6(9), 12140–12152 (2018)

    Article  Google Scholar 

  32. J.A. Blanco, Bosques, suelo y agua: explorando sus interacciones. Rev. Econ. 26(2), 1–9 (2017)

    Google Scholar 

  33. Universitat Autónoma de Barcelona, Las mejoras sin restricciones en tecnología pesquera amenazan el futuro del pescado salvaje (2017), https://www.uab.cat/web/sala-de-prensa/detalle-noticia/las-mejoras-sin-restricciones-en-tecnologia-pesquera-amenazan-el-futuro-del-pescado-y-el-marisco-salvaje-1345667994339.html?noticiaid=1345722216945

  34. E.D. Galbraith, D.A. Carozza, D. Bianchi. A coupled human-earth model perspective on long-term trends in the global marine fishery. Nat. Commun. 8, 14884 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Ingrid M. Cholo acknowledges Colciencias for its partial support, under Grant 645-2014:Convocatoria Nacional Jóvenes Investigadores e Innovadores 2014 and Grant Convocatoria Doctorados Nacionales No. 727 de 2015 Colciencias. Gerard Olivar acknowledges the Universidad Nacional de Colombia for its partial support under Grant Modelamiento avanzado de mercados de energia electrica para toma de decisiones de inversion y establecimiento de politicas, DIMA project number 35467 and Colciencias under Grant Modelado y Simulacion del Metabolismo Urbano de Bogota D.C. contract 022-2017. He also acknowledges CEMarin for its support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Cholo Camargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cholo Camargo, I.M., Olivar Tost, G., Dikariev, I. (2019). Bifurcations in a Mathematical Model for Study of the Human Population and Natural Resource Exploitation. In: Mondaini, R. (eds) Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-23433-1_4

Download citation

Publish with us

Policies and ethics