Skip to main content

The Effect of Concurrency on Epidemic Threshold in Time-Varying Networks

  • Chapter
  • First Online:
Temporal Network Theory

Part of the book series: Computational Social Sciences ((CSS))

Abstract

Various epidemic spreading processes are considered to take place on time-varying networks. One key factor that alters epidemic spreading on time-varying networks is concurrency, the number of neighbours that a node has at a given time point. In this chapter, we present a theoretical study of the effects of concurrency on the susceptible-infected-susceptible epidemic processes on a class of temporal network models. By theoretical analysis that explicitly takes into account stochastic dying-out effects, we show that network dynamics increase the epidemic threshold (i.e., suppress epidemics), compared to that for the time-averaged network when the nodes’ concurrency is low, but also decrease the epidemic threshold (i.e., enhance epidemics) when the concurrency is high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: J. Biol. Dyn. 4, 478–489 (2010)

    Article  MathSciNet  Google Scholar 

  2. Masuda, N., Holme, P.: F1000Prime Rep. 5, 6 (2013)

    Google Scholar 

  3. Holme, P.: Eur. Phys. J. B 88, 234 (2015)

    Article  ADS  Google Scholar 

  4. Masuda, N., Holme, P. (eds.): Temporal Network Epidemiology. Springer, Singapore (2017)

    MATH  Google Scholar 

  5. Morris, M., Kretzschmar, M.: Soc. Networks 17, 299–318 (1995)

    Article  Google Scholar 

  6. Kretzschmar, M., Morris, M.: Math. Biosci. 133, 165–195 (1996)

    Article  Google Scholar 

  7. Morris, M., Kretzschmar, M.: AIDS 11, 641–648 (1997)

    Article  Google Scholar 

  8. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Sci. Rep. 2, 469 (2012)

    Article  ADS  Google Scholar 

  9. Onaga, T., Gleeson, J.P., Masuda, N.: Phys. Rev. Lett. 119, 108301 (2017)

    Article  ADS  Google Scholar 

  10. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: In: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 717–726. ACM, New York (2007)

    Google Scholar 

  11. Stehlé, J., Barrat, A., Bianconi, G.: Phys. Rev. E 81, 035101(R) (2010)

    Google Scholar 

  12. Zhao, K., Karsai, M., Bianconi, G.: PLoS One 6, e28116 (2011)

    Article  ADS  Google Scholar 

  13. Liberzon, D.: Switching in systems and control. In: Systems and Control: Foundations and Applications. Birkhäuser, Boston (2003)

    Google Scholar 

  14. Masuda, N., Klemm, K., EguĂ­luz, V.M.: Phys. Rev. Lett. 111, 188701 (2013)

    Article  ADS  Google Scholar 

  15. Hasler, M., Belykh, V., Belykh, I.: SIAM J. Appl. Dyn. Syst. 12, 1031–1084 (2013)

    Article  MathSciNet  Google Scholar 

  16. Speidel, L., Klemm, K., EguĂ­luz, V.M., Masuda, N.: New J. Phys. 18, 073013 (2016)

    Article  ADS  Google Scholar 

  17. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Rev. Mod. Phys. 87, 925–979 (2015)

    ADS  Google Scholar 

  18. Keeling, M.J., Ross, J.V.: J. R. Soc. Interface 5, 171–181 (2008)

    Article  Google Scholar 

  19. Simon, P.L., Taylor, M., Kiss, I.Z.: J. Math. Biol. 62, 479–508 (2011)

    Article  MathSciNet  Google Scholar 

  20. Hindes, J., Schwartz, I.B.: Phys. Rev. Lett. 117, 028302 (2016)

    Article  ADS  Google Scholar 

  21. Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks: From Exact to Approximate Models. Springer, Cham (2017)

    Book  Google Scholar 

  22. Van Mieghem, P., Omic, J., Kooij, R.: IEEE Trans. Netw. 17, 1–14 (2009)

    Article  Google Scholar 

  23. De Oliveira, M.M., Dickman, R.: Phys. Rev. E 71, 016129 (2005)

    Article  ADS  Google Scholar 

  24. Alessandretti, L., Sun, K., Baronchelli, A., Perra, N.: Phys. Rev. E 95, 052318 (2017)

    Article  ADS  Google Scholar 

  25. Pozzana, I., Sun, K., Perra, N.: Phys. Rev. E 96, 042310 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.O. acknowledges the support provided through JSPS KAKENHI Grant Number JP19K14618 and JP19H01506. J.G. acknowledges the support provided through Science Foundation Ireland (Grants No. 16/IA/4470 and No. 16/RC/3918). N.M. acknowledges the support provided through JST, CREST, and JST, ERATO, Kawarabayashi Large Graph Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onaga, T., Gleeson, J.P., Masuda, N. (2019). The Effect of Concurrency on Epidemic Threshold in Time-Varying Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_14

Download citation

Publish with us

Policies and ethics