Skip to main content

Load Shedding, Emergency and Local Control

  • Chapter
  • First Online:
Microgrid Architectures, Control and Protection Methods

Part of the book series: Power Systems ((POWSYS))

Abstract

Nowadays, control of smart grids is of great importance in power networks. Considering loads and generations uncertainties is a paramount idea amongst researchers to illustrate real conditions of smart networks. Furthermore, special methods are being required to prevent cascading failures in emergency conditions whenever an islanded Microgrids (MGs) tends to work independently. The first important factor is that loads demand are supposed to be completely catered in islanded MGs. Sometimes, shedding some unnecessary predetermined loads to attain systems previous balanced condition is common in electrical networks. In this chapter, we want to present an array of methods to control MGs in emergency conditions considering uncertainties. In this chapter, we focus our effort on developing a coordination control algorithm using Emergency Demand Response (EDR) resources and Under Frequency Load Shedding (UFLS) methods considering various probabilistic scenarios. It is of supreme importance to design an optimal load shedding strategy in which customers and distribution companies’ rights are guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Sedighizadeh, M. Esmaili, A. Jamshidi, M.H. Ghaderi, Stochastic multi-objective economic-environmental energy and reserve scheduling of microgrids considering battery energy storage system. Int. J. Electr. Power Energy Syst. 106, 1–16 (2019)

    Article  Google Scholar 

  2. A. Conejo, J. Antonio, L. Baringo, Power systems, in Power System Operations (Springer, Cham, 2018), pp. 1–15

    Google Scholar 

  3. M. Bello, A. Maitra, R. Dugan, M. McGrail, A. Reid, R. Rodrigo, Protection coordination considerations for a highly meshed urban microgrid. in 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (2018), pp. 1–5

    Google Scholar 

  4. M.N. Alam, S. Chakrabarti, A. Ghosh, Networked microgrids: State-of-the-art and future prospectives. IEEE Trans. Ind. Info (2018)

    Google Scholar 

  5. N.M. Sapari et al., Application of load shedding schemes for distribution network connected with distributed generation: A review. Renew. Sustain. Energy Rev. 82, 858–867 (2018)

    Article  Google Scholar 

  6. Smartgrids European Technology Platform—Vision and strategy for Europe’s electricity networks of the future. Office for Official Publications of the European Communities, Luxembourg (2006), http://www.smartgrids.eu/documents/vision.pdf

  7. H. Nikkhajoei, R. Lasseter, Microgrid protection. in Proceedings of IEEE PES General Meeting, Tampa, FL, USA (2007)

    Google Scholar 

  8. D. Ishchenko, A. Oudalov, J. Stoupis, Protection coordination in active distribution grids with IEC 61850. in Proceedings of IEEE T&D Conference, Orlando, FL, USA (2012)

    Google Scholar 

  9. P. Kundur, Power system stability and control. Tata McGraw-Hill Education (1994)

    Google Scholar 

  10. W. Huang, M. Lu, L. Zhang, Survey on microgrid control strategies. Energy Procedia 12, 206–212 (2011)

    Article  Google Scholar 

  11. D.E. Olivares, A. Mehrizi Sani, A.H. Etemadi, C.A. Canizares, R. Iravani, M. Kazerani, A.H. Hajimiragha, et al., Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)

    Article  Google Scholar 

  12. C. Wang, M. Nehrir, Power management of a stand-alone wind photovoltaic/fuel cell energy system. IEEE Trans. Energy Convers. 23(3), 957–967 (2008)

    Article  Google Scholar 

  13. C. Alvial Palavicino, N. Garrido Echeverria, G. Jimenez Estevez, L. Reyes, R. Palma Behnke, A methodology for community engagement in the introduction of renewable based smart microgrid. Energy Sustain. Dev. 15(3), 314–323 (2011)

    Article  Google Scholar 

  14. H. Karimi, Islanding Detection and Control of an Islanded Electronically-Coupled Distributed Generation Unit. Ph.D., University of Toronto, Department of Electrical & Computer Engineering (2007)

    Google Scholar 

  15. W.A. Elmore, Protective Relaying, Theory and Applications 2nd edn. (Marcel Dekker, 2004)

    Google Scholar 

  16. B. Delfino, S. Massucco, A. Morini, P. Scalera, F. Silvestro, Implementation and comparison of different under frequency load-shedding schemes. Power Eng. Soc. Summer Meet. 1, 307–312 (2001)

    Article  Google Scholar 

  17. D. Xu, A.A. Girgis, Optimal load shedding strategy in power systems with distributed generation. in Proceeding IEEE Power Engineering Society Winter Meeting (2001), pp. 788–793

    Google Scholar 

  18. D. Hazarika, A. Sinha, Method for optimal load shedding in case of generation deficiency in a power system. Int. J. Electr. Power Energy Syst. 20(6), 411–420 (1998)

    Article  Google Scholar 

  19. P. Wang, R. Billinton, Optimum load-shedding technique to reduce the total customer interruption cost in a distribution system. Proc. Inst. Elect. Eng. Gen. Trans. Distrib. 147(1), 51–56 (2000)

    Article  Google Scholar 

  20. H. Seyedi, M. Sanaye-Pasand, Design of new load shedding special protection schemes for a double area power system. Am. J. App. Sci. 6(2), 317–327 (2009)

    Article  Google Scholar 

  21. V.V. Terzija, Adaptive under-frequency load shedding based on the magnitude of the disturbance estimation. IEEE Trans. Power Syst. 21(3), 1260–1266 (2006)

    Article  Google Scholar 

  22. P.M. Anderson, M. Mirheydar, A low order system frequency response model. IEEE Trans. Power Syst. 5(3), 720–729 (1990)

    Article  Google Scholar 

  23. U. Rudez, R. Mihalic, Analysis of underfrequency load shedding using a frequency gradient. IEEE Trans. Power Delivery 26(2), 265–275 (2011)

    Article  Google Scholar 

  24. A. Li, Z. Cai, A method for frequency dynamics analysis and load shedding assessment based on the trajectory of power system simulation. in Proceedings of 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technology (DRPT), April 6–9 (2008), pp. 1335–1339

    Google Scholar 

  25. D. Prasetijio, W.R. Lachs, D. Sutanto, A new load shedding scheme for limiting underfrequency. IEEE Trans. Power Syst. 9(3), 1371–1378 (1994)

    Article  Google Scholar 

  26. T. Shekari, F. Aminifar, M. Sanaye Pasand, An analytical adaptive load shedding scheme against severe combinational disturbances. IEEE Tran. Power Syst. 31(5), 4135–4143 (2016)

    Article  Google Scholar 

  27. A. Mokari, H. Seyedi, B. Mohammadi Ivatloo, S. Ghasemzadeh, An improved under-frequency load shedding scheme in distribution networks with distributed generation. J. Oper. Autom. Power Eng. 2(1), 22–31 (2014)

    Google Scholar 

  28. M. Karimi, P. Wall, H. Mokhlis, V. Terzija, A new centralized adaptive under frequency load shedding controller for microgrids based on a distribution state estimator. IEEE Trans. Power Delivery 32(1), 370–380 (2017)

    Article  Google Scholar 

  29. U. Rudez, R. Mihalic, Predictive under frequency load shedding scheme for islanded power systems with renewable generation. Electr. Power Syst. Res. 126, 21–28 (2015)

    Article  Google Scholar 

  30. P. Mahat, Z. Chen, B. Bak Jensen, Under frequency Load Shedding for an Islanded Distributed System with Distributed Generation. IEEE Trans. Power Delivery 25(2), 911–918 (2010)

    Article  Google Scholar 

  31. A. Mokari Bolhasan, H. Seyedi, B. Mohammadi Ivatloo, S. Abapour, S. Ghasemzadeh, Modified centralized ROCOF based load shedding scheme in an islanded distribution network. Int. J. Electr. Power Energy Syst. 62(1), 806–815 (2014)

    Article  Google Scholar 

  32. A. Gholami, T. Shekari, F. Aminifar, M. Shahidehpour, Microgrid scheduling with uncertainty: The quest for resilience. Smart Grid IEEE Trans. 7(6), 2849–2858 (2016)

    Article  Google Scholar 

  33. C. Reddy, S. Chakrabarti, S. Srivastava, A sensitivity-based method for under-frequency load-shedding. IEEE Trans. Power Syst. 29(2), 984–985 (2014)

    Article  Google Scholar 

  34. L. Sigrist, I. Egido, L. Rouco, A method for the design of UFLS schemes of small isolated power systems. IEEE Trans. Power Syst. 27(2), 951–958 (2012)

    Article  Google Scholar 

  35. V. Tamilselvan, T. Jayabarathi, A hybrid method for optimal load shedding and improving voltage stability. Ain Shams Eng. J. 7(1), 223–232 (2016)

    Article  Google Scholar 

  36. S. Mullen, G. Onsongo, Decentralized agent-based under frequency load shedding. Integr. Comput.-Aided Eng. 14(2), 321–329 (2010)

    Article  Google Scholar 

  37. V. Chuvychin, R. Petrichenko, Development of smart under frequency load shedding system. J. Electr. Eng. 64(2), 123–127 (2013)

    Google Scholar 

  38. B. Yu Qing, L. Yang, W. Beibei, H. Minqiang, C. Peipei, Demand response for frequency control of multi-area power system. J. Modern Power Syst. Clean Energy 5(1), 20–29 (2017)

    Article  Google Scholar 

  39. Y. Bao, Y. Li, FPGA-based design of grid friendly appliance controller. IEEE Trans. Smart Grid 5(2), 924–931 (2014)

    Article  Google Scholar 

  40. P. Babahajiani, Q.Shafiee, H. Bevrani, Intelligent demand response contribution in frequency control of multi-area power systems. IEEE Trans. Smart Grid PP (99), 1–10 (2016)

    Google Scholar 

  41. P. Babahajiani, H. Bevrani, Q. Shafiee, Intelligent coordination of demand response and secondary frequency control in multi-area power systems (2016)

    Google Scholar 

  42. L. Nikonowicz, J. Milewski, Virtual power plants—general review: Structure, application and optimization. J. Power Technol. 92(3), 135–149 (2012)

    Google Scholar 

  43. A. Zakariazadeh, O. Homaee, S. Jadid, P. Siano, A new approach for real time voltage control using demand response in an automated distribution system. Appl. Energy 117, 157–166 (2014)

    Article  Google Scholar 

  44. A. Mokari Bolhasan, N. Taghizadegan Kalantari, The new adaptive under frequency load shedding technique in an automated distribution network considering demand response programs. J. Power Technol. 98(1), 127–138 (2018)

    Google Scholar 

  45. S. Chowdhury, P. Crossley, Microgrids and active distribution networks (Inst. Eng, Technol, 2009)

    Book  Google Scholar 

  46. A.J. Conejo, M. Carrion, J.M. Morales, Decision Making Under Uncertainty in Electricity Markets (Springer, 2010)

    Google Scholar 

  47. A. Rabiee, A. Soroudi, B. Mohammadi-ivatloo, M. Parniani, Corrective voltage control scheme considering demand response and stochastic wind power. Power Syst. IEEE Trans. 29, 2965e2973 (2014)

    Article  Google Scholar 

  48. A. Soroudi, B. Mohammadi-Ivatloo, A. Rabiee, Energy Hub Management with Intermittent Wind Power. Large Scale Renewable Power Generation (Springer, Singapore, 2014), pp. 413–438

    Book  Google Scholar 

  49. A. Soroudi, A. Rabiee, A. Keane, Stochastic real-time scheduling of wind thermal generation units in an electric utility. IEEE Syst. J. (2014)

    Google Scholar 

  50. S. Kakran, S. Chanana, Smart operations of smart grids integrated with distributed generation: A review. Renew. Sustain. Energy Rev. 81(1), 524–535 (2018)

    Article  Google Scholar 

  51. A. Gholami, T. Shekari, F. Aminifar, M. Shahidepour, Microgrid scheduling with uncertainty: The quest for resilience. IEEE Trans. on Smart Grid 7(6), 2849–2858 (2016)

    Article  Google Scholar 

  52. S. Chen, T. Zhang, H.B. Gooi, R.D. Masiello, W. Katzenstein, Penetration rate and effectiveness studies of aggregated BESS for frequency regulation. IEEE Trans. Smart Grid 7(1), 167–177 (2016)

    Article  Google Scholar 

  53. U. Akram, M. Khalid, A coordinated frequency regulation framework based on hybrid battery-ultracapacitor energy storage technologies. IEEE Access 6(99), 7310–7320 (2018)

    Article  Google Scholar 

  54. X. Zhou, C. Dong, J. Fang, Y. Tang, Enhancement of load frequency control by using a hybrid energy storage system. in Proceeding of 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore (2017), pp. 1–6

    Google Scholar 

  55. H. Fa, L. Jiang, C. Zhang, C. Mao, Frequency regulation of multi-area power systems with plug-in electric vehicles considering communication delays. IET Gener. Trans. Distrib. 10(14), 3481–3491 (2016)

    Article  Google Scholar 

  56. J. Engels, B. Claessens, G. Deconinck, Combined stochastic optimization of frequency control and self-consumption with a battery. IEEE Trans. Smart Grid PP (99), 1–1 (2017)

    Google Scholar 

  57. E. Namor, F. Sossan, R. Cherkaoui, M. Paolone, Control of battery storage systems for the simultaneous provision of multiple services. IEEE Trans. Smart Grid PP (99), 1–1 (2018)

    Google Scholar 

  58. P. Kundur, N.J. Balu, M.G. Lauby, Power System Stability and Control (McGraw-Hill, New York, NY, USA, 1994)

    Google Scholar 

  59. J.W. Shim, G. Verbic, N. Zhang, K. Hur, Harmonious integration of faster-acting energy storage systems into frequency control reserves in power grid with high renewable generation. IEEE Trans. Power Syst. PP (99), 1–1 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Taghizadegan Kalantari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bolhasan, A.M., Kalantari, N.T., Ravadanegh, S.N. (2020). Load Shedding, Emergency and Local Control. In: Mahdavi Tabatabaei, N., Kabalci, E., Bizon, N. (eds) Microgrid Architectures, Control and Protection Methods. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-23723-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23723-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23722-6

  • Online ISBN: 978-3-030-23723-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics